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Abstract

In this thesis, we investigate several approaches to evaluate modern neural language

models through the lens of systematicity, in order to assess their human-level reason-

ing and comprehension of natural language. First, we investigate the model’s limits in

encoding the natural language semantics by proposing a diagnostic challenge dataset

known as CLUTRR. Drawing inspiration from first-order logic, this dataset specifi-

cally tests for systematicity in length generalization in natural language understanding

models, in the form of a question-answering task. We observe most major models fail

in generalizing to longer chain of reasoning, with the main limitation arising from their

rudimentary understanding of syntax. Next, we apply the principles of systematicity

to evaluate the syntax encoding strategy of large language models by applying permu-

tations to the word order seen during inference and training. We observe a surprising

fact that a trained neural language model can still perform optimally when subjected

to sentences of shuffled word orders, devoid of their original meaning, and further-

more they can even improve their performance significantly on specific permutations.

Next, we investigate the reasons of such behavior by pre-training large language mod-

els on meaningless, word-order shuffled corpora, to find they too behave optimally on

downstream semantic and syntactic tasks. These results highlight the potential distri-

butional nature of large language models, such that they only focus on n-grams during

computation. Finally, we attempt to investigate the root cause of these effects, to find

the component of the model most responsible. We observe that certain classes of posi-
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tion embeddings lead the models to overfit on the token positions, subjecting models

to exhibit un-systematic behavior on out-of-position sentences. In summary, this thesis

attempts to shed more light to the black box nature of the state-of-the-art neural lan-

guage models, and introduces mechanisms to test and ensure systematic behaviors in

their understanding of natural language.
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Abstract in French

Dans cette thèse, nous étudions plusieurs approches pour évaluer les modèles neu-

ronaux de langage modernes à travers le prisme de la systématicité, afin d’évaluer

leur raisonnement et leur compréhension du langage naturel à l’échelle humaine. Tout

d’abord, nous étudions les limites du modèle dans l’encodage de la sémantique du lan-

gage naturel en proposant un jeu de données de défi de diagnostic connu sous le nom

de CLUTRR. S’inspirant de la logique du premier ordre, ce jeu de données teste spéci-

fiquement la systématicité de la généralisation des longueurs dans les modèles de com-

préhension du langage naturel, sous la forme d’une tâche de question-réponse. Nous

observons que la plupart des principaux modèles ne parviennent pas à généraliser à

des chaînes de raisonnement plus longues, la principale limitation provenant de leur

compréhension rudimentaire de la syntaxe. Ensuite, nous appliquons les principes de

la systématicité pour évaluer la stratégie d’encodage syntaxique des grands modèles

de langage en appliquant des permutations à l’ordre des mots vu pendant l’inférence et

l’entraînement. Nous observons un fait surprenant : un modèle de langage neuronal

entraîné peut encore obtenir des performances optimales lorsqu’il est soumis à des

phrases dont l’ordre des mots est mélangé, dépourvues de leur signification originale,

et, de plus, il peut même améliorer ses performances de manière significative sur des

permutations spécifiques. Ensuite, nous étudions les raisons d’un tel comportement en

pré-entraînant de grands modèles de langage sur des corpus de mots mélangés sans

signification, pour constater qu’ils se comportent également de manière optimale sur
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des tâches sémantiques et syntaxiques en aval. Ces résultats mettent en évidence la

nature distributive potentielle des grands modèles de langage, tels qu’ils ne se con-

centrent que sur les n-grammes pendant le calcul. Enfin, nous essayons d’étudier la

cause profonde de ces effets, afin de trouver le composant du modèle le plus respons-

able. Nous observons que certaines classes d’encastrements de position conduisent les

modèles à s’adapter de manière excessive aux positions des tokens, ce qui les amène

à présenter un comportement non systématique sur les phrases hors position. En ré-

sumé, cette thèse tente de mettre en lumière la nature de boîte noire des modèles neu-

ronaux de langage de pointe, et introduit des mécanismes pour tester et assurer des

comportements systématiques dans leur compréhension du langage naturel.
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1

Chapter 1

Introduction

1.1 Motivation

A principled focus in computer science research is to develop models which mimic

human-like reasoning. Towards that objective, one of the key goals is to develop mod-

els which understand and reason on natural language. Natural language allows hu-

mans to express and comprehend a vast variety of novel thoughts and ideas, and it

serves as a medium to convey higher-order reasoning and comprehension. Thus, en-

dowing the reasoning and communication capabilities using natural language to ma-

chines has long been the goal of computer scientists. Early approaches involved formal

rule-based symbolic approaches to represent language, in order to have an interpretable

function to compose the form and meaning of written and spoken text [Chomsky, 1957,

Van Benthem, 1995, Van Benthem et al., 2008, MacCartney and Manning, 2009]. How-

ever, this formal approach was unable to model the ambiguity of language, where the

meaning of the text depends on its context. Thus, approaches based on distributional

semantics evolved, which tracked the contextual meaning of word representations us-

ing continuous vectors [Mikolov et al., 2013a, Pennington et al., 2014]. Following the

success of distributional processing, the modern deep-learning era of language repre-
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sentations evolved, where the entirety of language acquisition is data-driven powered

by a neural network, leading to highly successful and robust Natural Language Under-

standing (NLU) models [Rosenblatt, 1958, Rumelhart et al., 1986, Hinton et al., 2006,

Bengio et al., 2006, Hochreiter and Schmidhuber, 1997, Cho et al., 2014, Kim, 2014,

Bahdanau et al., 2014]. However, these neural models forgo interpretability in favor of

performance, leading to the black-box nature of their internal processing.

Over the last five years, a class of the deep neural models rose to the pinnacle of

success: the Transformers [Vaswani et al., 2017] and its derivatives. Since its intro-

duction in 2017, Transformer-based models have achieved impressive results on nu-

merous benchmarks and datasets, with BERT [Devlin et al., 2019b] being one of the

most popular instantiation of the same. Using a technique known as “pre-training”

[Mikolov et al., 2013a, Peters et al., 2018], Transformer-based models are first trained

to learn a powerful language representation by ingesting massive corpus of text in an

unsupervised fashion. Through this kind of unsupervised training, the models learn

and tune their millions and billions of parameters, and using which they solve down-

stream tasks with surprising, near-human efficiency [Devlin et al., 2019b, Liu et al.,

2019b, Lewis et al., 2020b]. Due to the improvement in massive compute resources and

availability of large text corpus, the community has witnessed a steady increase in the

variants of the Transformer family of models, each having more number of parameters

than their predecessors [Kaplan et al., 2020]. At the time of the writing of this thesis,

the largest Transformer family of models, GPT3 [Brown et al., 2020] and OPT [Zhang

et al., 2022b], consist of 175 billion parameters, and are able to not only solve many

downstream tasks with surprising ease, but learn new tasks with fewer instructions.

While Transformer-based models excel in the current datasets and benchmarks, it

is less clear why do they work so well, as the neural models themselves lack inter-

pretability. Due to the sheer amount of over-parameterization, direct inspection of the

inner workings of these models are limited. Thus, various research have been con-
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ducted by using auxilliary tasks and probing functions to understand the reasoning

processes employed by these models [Rogers et al., 2020]. Transformer embeddings

are also reported to contain syntactic information about a given input, to the extent

that the model may internally perform several natural language processing pipeline

steps, involving parts-of-speech tagging, entity recognition etc [Tenney et al., 2019].

The fact that Transformer-family of models are credited for acquiring some level syn-

tactic [Hewitt and Manning, 2019, Jawahar et al., 2019a], semantic [Ettinger, 2020], and

world knowledge [Petroni et al., 2019, Rogers et al., 2020], purely by self-supervision,

suggests that pre-training with massive overparameterized models and large corpora

might just be the perfect roadmap to achieve “human-like” reasoning capabilities.

However, practitioners in natural language processing routinely concur that even

with these models we are still far from the goal of developing a model mimicking

human-level intelligence [Kiela et al., 2021]. There is growing evidence in literature

which highlight the brittleness of NLU systems to adversarial examples [Jia and Liang,

2017, Ettinger et al., 2017, Ettinger, 2020, Ribeiro et al., 2020], where a non-standard

input is shown to drastically reduce model performance. Models have been demon-

strated to be highly susceptible to character-level perturbations and changes [Ebrahimi

et al., 2018a, Minervini and Riedel, 2018, Ebrahimi et al., 2018b, Wallace et al., 2019].

More so, there is strong evidence that state-of-the-art models tend to exploit statistical

artifacts and heuristics in datasets, rather than exhibiting true reasoning and general-

ization capabilities [Gururangan et al., 2018, Poliak et al., 2018, Tsuchiya, 2018, Naik

et al., 2018, McCoy et al., 2019a].

In view of the positive and negative evidences towards Transformers acquiring

“human-like” natural language understanding capacity, it is very important that we

take a step back and carefully examine the reasoning processes of these models, to

make them more interpretable. In this thesis, I use the principles of systematicity to

re-investigate the reasoning processes employed by the state-of-the-art models. The
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phenomenon of systematicity, widely studied in the cognitive sciences [Gentner and

Toupin, 1986], refers to the fact that lexical units such as words make consistent con-

tributions to the meaning of the sentences in which they appear [Fodor and Pylyshyn,

1988]. As an illustration, they provide an example that all English speakers who un-

derstand the sentence “John loves the girl” should also understand the phrase “the

girl loves John”. In case of NLU tasks, this accounts to model being consistent in un-

derstanding novel compositions of existing, learned words or phrases. Systematicity

also defines a way to evaluate models by composition, in a way to compare the inner

workings of a model to a formal, symbolic rule-based system. While rule-based sys-

tems were poor in representing natural language, they were consistent, interpretable

and compositionally generalizable. In this thesis, I present my work to evaluate the

modern NLU models in the lens of systematicity, so that we can assess their limits

of reasoning. This will allow us to implement better safeguards to build more robust

and generalizable models. Since Transformer-based models are now being deployed

in production and decision making systems, it is even more prudent to test the models

towards systematic understanding in order to avoid catastrophic scenarios.

1.2 Research Questions

Therefore, in this section I list the main research questions I investigate throughout this

thesis:

• Are state-of-the-art NLU models systematic in their understanding of semantics?

(Chapter §3)

• Are these models systematic in their understanding of the basic form syntax, such

as word order? (Chapter §4)

• Do Transformer models learn language during pre-training in a systematic way?
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(Chapter §5)

• Are the Transformer models systematic in their understanding of relative posi-

tions of words in a given input? (Chapter §6)

In the next section, I provide a brief overview of the results, and discuss the full

results and experimental setups in detail throughout the thesis. Finally, I end the thesis

with a conclusion and discussion of future work in Chapter §7.

1.3 Preview of the Results

Throughout my thesis, we find overwhelming evidence of systematicity issues of NLU

models, including the state-of-the-art Transformer family of models. In Chapter §3,

we find models are unable to extrapolate to longer sequences than the one they are

trained on, and also they are unable to reason in a noisy setup where the input text

contains irrelevant information [Sinha et al., 2019]. In Chapter §3, we also find evidence

that deep neural models can do better in extrapolation only if they are subjected to

rudimentary syntax, which is not the case for natural language.

Chapter §4 confirms our hypothesis of weak syntax encoding capabilities of mod-

ern neural networks [Sinha et al., 2021b]. Specifically, we find all models to be in-

sensitive to perturbations in word order - so much so that they can operate on shuf-

fled, meaningless input hallucinating it as if it is a natural sentence. Through various

analysis we observe that the syntax encoding capabilities of these large neural models

are rudimentary, in that they can only understand a shallow hierarchy of collection of

words.

In Chapter §5, we get a glimpse of the true nature of natural language processing

pipelines employed by the state-of-the-art Transformer models [Sinha et al., 2021a]. In-

stead of internally processing a given text through a classical NLP pipeline as claimed
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by several papers, we find Transformer models learn language by exploiting the distri-

butional properties of words and their neighbors. We observe that pre-training a large

language model on the same exact conditions by just changing the order of the words

in the input text surprisingly does not change the downstream task performance signif-

icantly. Our results indicate that these Transformer models only need to learn n-gram

statistics of tokens in order to arrive at an optimal representation.

Finally in Chapter §6, we gain a probable reason to why Transformer models are in-

sensitive to syntax perturbations [Sinha et al., 2022]. Our results indicate certain class of

Transformer models overfit on the position information, so much so that their sentence

processing capabilities are significantly affected if the starting position of the sentence

is shifted. Our results highlight a key component in the Transformer-family of models

which requires more attention in order to induce systematicity in their reasoning : the

position encodings.
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Chapter 2

Background

2.1 Early methods for text representation

Natural Language is the primary medium to conduct reasoning, and correspondingly,

most use cases of natural language processing involve reasoning in some form. The

process of reasoning has been widely studied throughout the history of mankind, from

Aristotle’s Prior Analytics. During 19th and 20th centuries, theoreticians such as Boole

and Fredge transformed reasoning into a rigorous mathematical science Van Benthem

et al. [2008]. Historically, natural language meaning and logical inference have been

studied under the notion of formal semantics Van Benthem [1995], where the natural

language meaning is represented in a symbolic compositional structure and sentences

are reduced to a logical formula MacCartney and Manning [2009]. In this notion, the

grammatical syntax of a sentence along with the semantic interpretations are repre-

sented as a combination of expressions in some higher order logic. Formal semantic

representations of language are extremely powerful and expressive as they can be fed

to automatic theorem provers to perform various natural language processing tasks.

However, designing such sophisticated theorem proving systems introduces a major

challenge: the rules associated with the formal grammar have to be provided a priori,
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or learned. But learning such combinatorially expressive rules is hard and computa-

tionally expensive.

2.1.1 Formal semantics and logical representations of natural language

Formal semantics provides a powerful way to represent natural language in some form

of higher order logic. Logic is usually represented in various formulas such as Propo-

sitional Logic, Predicate Logic, and Higher order Logic Kowalski [1979]. Each of these

form of formulas are built on top of the other, which result in gradually more and

more expressive powers of the reasoning logic. For instance, the central component of

propositional or first-order logic is represented by a set of if-then rules, or clauses. A

clause is a rule of the form:

α← α1, ..., αm (2.1)

where, α is referred as an atom, and the left-hand side (LHS) of the above equation is

known as head and the right-hand side (RHS) is referred as body. The rules are com-

posed by chaining through the and relation (∧).

Formal semantics offers a mechanism to encode natural language by the usage of a

collection of sound rules or clauses, using which all possible combinations (conjuction

and disjunction) of the formula can be derived using in first-order predicate calculus

Hofstadter [1980]. This field in formal semantics is known as deductive logic. In the

early 1970’s, Colmeraurer and Kowalski [1979] were instrumental in development of

a logic based programming language called Prolog. Prolog performs restricted first-

order logical resolution using lazy backward-chaining. Using Prolog, one can specify

a set of rules such that it can verify or deduce any given logical formulae.

However, deductive logic requires a pre-defined set of rules governing natural lan-

guage, which is an untractable problem. Therefore, formal semantics also provides

a mechanism to learn the rules from the data, using inductive reasoning. This kind of
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learning method belongs to the field of Inductive Logic Programming (ILP) Džeroski

[2009]. In this line of approach, one starts with a background knowledge or Knowl-

edge Base (KB) of predicates, and then learns rules or clauses from the given data. KB

are often highly incomplete Min et al. [2013], and thus ILP can be used to induce rules

and infer missing facts by reasoning over the existing relations and predicates. ILP

systems can be broadly classified into forward-chaining and backward-chaining systems.

Forward-chaining, also known as top-down approaches use generate-and-test: they gen-

erate clauses from a language definition, and test the generated programs against the

positive and negative examples. Backward chaining or bottom-up approaches start by

examining features of the examples, extract specific clauses from those examples, and

then generalize from those specific clauses.

Formal semantics represent sentences in logical form which can be fed to an au-

tomated theorem prover to perform textual inference, question answering, machine

translation and a host of other tasks. These systems are highly interpretable, as the

rule deduction or inductive decisions are backed by formal proofs in the form of built

clauses. However, the sophistication of such semantic models comes at a cost: the com-

plex set of rules allowing for logical interpretation of text must either be provided or

learned a-priori. For language, this boils down to maintaining an inventory of semantic

relations MacCartney and Manning [2009] which is built by domain experts and thus

incorporates bias and which also cannot be exhaustive.

Natural language itself is symbolic and discrete, however the discrete symbols

evoke different interpretations based on the context. Thus, symbolic methods are un-

able to handle noisy, erroneous, ambiguous or polysemous nature of text data. Lan-

guage is compositional, but the way in which words (discrete symbols) are composed

(combined) to form meanings is practically infinite. In the next section, we therefore

discuss a class of models which account for this ambiguity in data through the use of

vectors and differentiable functions.
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2.1.2 N-gram Language Models

Natural language is highly ambiguous (syntactic ambiguity, word sense ambiguity, se-

mantic ambiguity) and contextual, i.e., it has multiple interpretations based on usage.

Hence, to account for the flexibility of natural language use, probabilistic models of

natural language reasoning were built, which attempt to learn the associated rules of

reasoning through empirical data. This led to the era of statistical relational learning

[Glickman et al., 2005, Han et al., 2006, Domingos and Richardson, 2006] which mod-

elled the uncertainty of reasoning by starting with a prior belief and updating it to a

posterior belief based on the evidence of the data. One such popular probabilistic model

to represent natural language is an n-gram language model. In its core, n-gram language

model are a family of Markov models that estimate the probability of a word given

a fixed window of prior words. These estimations can be computed by counting the

probability of occurrence of such words, using the maximum likelihood estimate. For

example, the probability of a sentence S containing n words can be decomposed based

on the Markov assumption that the probability of a word only depends on the previous

words as follows.

P (w1,w2, . . . ,wn) =
n∏

i=1

P (wi|w<i) (2.2)

In n-gram language models, the assumption is relaxed (independence assumption)

such that a word can only depend on the probability of n previous words. Thus, for a

bi-gram model, the probability of a word only depends on the previous word, and thus

can be computed by counting the bi-grams in the corpus involving the word divided

by all possible bi-grams.

P (w1,w2, . . . ,wn) =
n∏

i=2

P (wi|wi−1) (2.3)

Using the probabilistic interpretation, natural language sequences can be modelled
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by learning the probability estimates from a large corpora. The probability estimate (or

likelihood, after application of log) is evaluated as a measure for the models reasoning

abilities, such that syntactically and semantically well-formed sentences are expected

to estimate a higher likelihood.

2.1.3 Distributional semantics using vector representations

The n-gram language modelling approach still uses distinct symbols and a count-based

approach. Better generalization can be obtained in natural language reasoning by op-

erating on embedded vector representations of discrete symbols, in which vector sim-

ilarity can be interpreted as semantic similarity [Joos, 1950, Harris, 1954, Firth, 1957].

Distributional semantics, thus, capture the vector representations of symbols, such as

words, to compose a meaning representation of a sentence in context of other words.

These methods are also called sub-symbolic methods as they operate on the vector

representations of the symbols themselves [Neelakantan et al., 2015].

For instance, in vector semantics a word is not represented as a discrete token as in

formal semantics, but is represented as a point in high dimensional space, or a vector

embedding. These embeddings can be either sparse or dense. Sparse embeddings of

words are usually computed from a given corpora, which capture the co-occurrence

counts of neighbors of the given word in the document, using term-frequency [Luhn,

1957], inverse document frequency [Jones, 1972] (tf-idf) and pointwise positive mu-

tual information (PPMI) [Fano, 1949] measures. Dense vectors represent a word in

the order of high dimensions, and are typically computed using the Word2Vec algo-

rithm, such as skip-gram, which trains a logistic regression classifier to compute the

likelihood of two words to occur nearby in the corpora. Another method, Glove [Pen-

nington et al., 2014] is also used to represent dense vectors for words, which is based

on learning a global word co-occurrence probabilities. The use of vectors enables us

to compute similarity between two words, sentences or documents, by computing the
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dot product between the vector representations. This similarity metric is further used

to train the vector representations of words using the Word2vec [Mikolov et al., 2013a]

or Glove [Pennington et al., 2014] algorithms, using efficient optimization algorithms

such as stochastic gradient descent (SGD), allowing learning from large training cor-

pora. These features highlights the strength of vector representations to model the

ambiguity in language.

2.2 Neural Inductive bias of text representation

Neural Networks are a class of biologically inspired connectionist models which oper-

ates on continuous vector representations and thus they are also more robust to noise

and ambiguity of natural language [Wang and Jiang, 2016, Goodfellow et al., 2016].

Neural networks offer significant representational capacity to learn rich vector rep-

resentations of words, sentences and documents, and also does not require feature

engineering. Due to its representational strength, most modern natural language un-

derstanding (NLU) models have thus built on top of neural models having distribu-

tional vector representation of the lexical items. In its simplest form, a feed-forward

neural network consists of fully-connected networks in multiple layers, where each

layer consists of an affine combination of vectors and non-linear activation function

(tanh, sigmoid or rectified linear units) [Rosenblatt, 1958, Rumelhart et al., 1986, Hin-

ton et al., 2006, Bengio et al., 2006]. Further improvements were made to handle the

polysemous and context-dependent nature of words by using contextual embeddings

through leveraging the sequences of sentences, typically using Recurrent (Long Short-

Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997], Gated Recurrent Units

(GRU) [Cho et al., 2014]) or Convolutional models (CNN) [Kim, 2014]. Models based

on Long Short Term Memory (LSTM) became the de-facto standard in NLU, as they

can effectively capture the contextual information with locality bias present in natural
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language. However, its performance is often affected by the long-term dependency

problem in several NLU tasks. Recently, the field of NLP has witnessed a paradigm

shift in research with the advent of Transformers [Vaswani et al., 2017]. Being a fully-

connected multi-head self-attention model, Transformers can directly model the de-

pendency between any two words in a sequence, thus proving to be more powerful

and suitable to model long range dependencies of natural language. However, Trans-

formers come with massively increased model parameters, thus requiring significantly

large corpus to train and resulting in overfitting on small and medium sized datasets

[Radford et al., 2018].

2.2.1 Feed Forward Neural Networks

A Feed-Forward Neural Network (FNN) consists of a collection of neurons which are

connected to other neurons via synapses or weights Rosenblatt [1958]. A FNN is fur-

ther modelled into layers represented as input, hidden or output vectors and weights

connecting input and hidden layers, and hidden and output layers. There can also be

weights connecting hidden and hidden layers when the number of hidden layers is

more than one. A simple formulation of an FNN can be given as:

f (i) = g(Wix+ bi) (2.4)

Activation for a node i in any layer l, f (i)
l , is computed as a function of the weights

connecting that node from the previous layer and the input from previous layer. Every

hidden and output layer has a non-linear function to project the activations, g, which

are usually sigmoid, tanh, rectilinear or softmax functions. Learning happens by esti-

mating the gradients for the weights using backpropagation [Rumelhart et al., 1986]

and updating using stochastic gradient descent with a learning rate, ϵ, that reflects the

magnitude of descent in the direction of the gradient.
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Figure 2.1 A Feed Forward Network (FFN) and a Recurrent Neural Net-
work (RNN)

2.2.2 Recurrent Neural Networks and LSTMs

RNN employ a feedback connection by repeatedly applying FNN (Figure 2.1). The

addition of the feedback loops to the hidden units of an MLP can be thought of forming

a hidden state of the network h(x), corresponding to the vector of activations (value

after the non-linearity) of the hidden neurons, that evolves over time as we present

inputs to the network. The hidden state is updated at each time step according to

some function f :

ht = f(ht−1, xt) (2.5)

RNNs are learned by computing gradients through time, which is also known as

Back Propagation Through Time (BPTT) [Rumelhart et al., 1986].

While repeatedly applying the FNNs to create an RNN, the architecture faces a criti-

cal “vanishing and exploding gradient" problem [Hochreiter et al., 2001], i.e., the gradi-

ents either become too insignificant or too big while backpropagating through multiple

non-linear layers. To overcome this problem, Long Short-Term Memory [Hochreiter

and Schmidhuber, 1997] was proposed which consists of a specific gating architec-

ture to overcome the problem to a great extent. The standard LSTM architecture is

described in Figure 2.2.
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Figure 2.2 Block diagram of LSTM cell.

Given an input sequence, LSTM can also be run in both directions to get two final

representations−→yt in the forward direction and←−yt in the backward direction. This class

of modified LSTM is known as Bidirectional LSTM and it has been used as a standard

feature extractor in various natural language processing tasks Rocktäschel et al. [2015],

Wang and Jiang [2016], Serban et al. [2016]. In language modelling & machine transla-

tion tasks [Serban et al., 2016, 2017, Bahdanau et al., 2014], BiLSTM is used to construct

an encoded representation of the input text, conditioned on which the next word in

the output text is decoded. For textual entailment tasks [Bowman et al., 2015], two in-

dividual sentence representations of the hypothesis and premise are calculated using

BiLSTM, and the entailment is predicted over the concatenated representation [Rock-

täschel et al., 2015]. For QA tasks, the natural language question is encoded through a

BiLSTM and the sentence representation is used in downstream reasoning [Wang and

Jiang, 2016]. Given the gated memory structure of LSTM and bidirectional read, they

provide a powerful mechanism to convert text into a fixed vector representation which

captures various syntactic and semantic features of natural language [Conneau et al.,

2018b].
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2.2.3 Transformer Models

In contrast to RNNs and LSTMs, Transformer [Vaswani et al., 2017] architectures elim-

inate the need of recurrent connections and instead use fully connected self-attention

layers. Attention mechanisms [Bahdanau et al., 2014] were previously developed to

improve RNNs and LSTMs to allow the model to condition on longer contexts than

what the default recurrence provides. Transformer architecture leverages this attention

mechanism to attend on the same input (hence the name “self-attention”) in multiple

layers, this allowing the model to bypass the need of recurrence and directly utilize the

information from any context.

Self-attention

Transformer architecture maps an input sequence (x1, x2, . . . , xn) to an output sequence

(y1, y2, . . . , yn) of the same length, hence being a transductive model. Self-attention con-

sists of computing vector similarities, using the dot product, between a pair of inputs:

score(xi, xj) = xi.xj (2.6)

This dot product yields scalar values in R. Attention from each input to any other

input is computed as the softmax over the dot product value in order to capture the

proportional probability of similarity between tokens. This attention value is then mul-

tiplied by the inputs to compute the output at a sequence element. Every input is

restricted to attend to all inputs beyond its position, thereby mimicing the canonical

language modeling setup (although Markov assumptions no longer hold here due to

the linear combination).

αi,j =
exp(score(xi, xj))∑i
k=1 exp(score(xi, xk))

(2.7)
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yi =
∑
j≤i

αi,jxj (2.8)

Using this basic formulation, Transformers first map the inputs into three distinct

vectors, query (q), key (k) and value (v). When computing the attention from the cur-

rent input to a preceding input, the model chooses to compute the score between the

query mapping of the current input against the key mapping of the preceding input.

This score is then using to linearly combine the value mappings of preceding inputs

to compute the output for the current token. In practice, this score can become un-

bounded and lead to numerical issues. Therefore, the score is normalized by dividing

with the square root of the dimensionality of the query and key vectors.

qi = θqxi, ki = θkxi, vi = θvxi (2.9)

score(xi, xj) =
qi.kj√
dk

(2.10)

yi =
∑
j≤i

αi,jvj (2.11)

This attention mechanism is now stacked in two dimensions. First, the same atten-

tion mechanism is applied multiple times using unique set of weights. This is known as

multi-head attention, to emulate multiple heads (or weights) being utilized to compute

unique sets of attentions for the same current and preceding input pair. The resulting

attention mechanism is referred to as an attention-layer. Second, the attention layers

can be stacked on top of each other to emulate a multi-layer neural network. Typically,

a feed-forward layer, layer normalizations [Ba et al., 2016] and residual connections

are applied after one attention layer to convert it to a transformer block, which is then

stacked vertically in multiple layers (Figure 2.3).
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Figure 2.3 Transformer encoder block as described in Vaswani et al. [2017].

Position embeddings

One drawback of the vanilla Transformer architecture is that word order cannot be

represented, as due to linear combination of attention scores the individual inputs can

be re-arranged to get the exact same output. Thus, position information is fed to the

model by representing the position of each token using a feature vector. Vaswani et al.

[2017] use absolute word position information as a feature vector, which is derived

from an alternating sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/d)

PE(pos,2i+ 1) = cos(pos/100002i/d)
(2.12)

PE is the position embedding matrix of size m × d, where m is the total number of

positions supported by the model, and d is the dimensionality of the positional em-
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bedding. d is kept as same as the embedding dimensionality of the input xi such that

the input representation is updated with the positional features by element-wise sum

before applying the self-attention mechanism.

xi = xi + PE[i] (2.13)

Subsequently, a unique learned position feature is used to define the absolute posi-

tion encoding [Devlin et al., 2019b]. Instead of using a fixed function, the model can use

a learned positional matrix θPE ∈ Rm×d of the same dimension (commonly referred to

as learned positional embedding), where the features are learned by backpropagation

during training.

While absolute position encodings, especially learned position embeddings are still

used by many variants of the Transformer models, it lacks the capacity to model rel-

ative position distances between tokens 1. Thus, relative positional encodings were

proposed [Shaw et al., 2018] which directly encode the relative distance between the

words. Specifically, instead of maintaining a large embedding matrix (θPE), a smaller

embedding matrix is now maintained based on a window size r, and dynamically

compute the position encoding of a token based on the relative distances between the

current token and its neighbors within the window of size r. Please refer to Wang et al.

[2021], Dufter et al. [2021] for a comprehensive overview of different position encoding

strategies.

2.2.4 Pre-training and the advent of large language models

Transformer architectures introduce mechanisms to drastically increase the amount

of trainable model parameters, compared to RNN and LSTM counterparts. With in-

creasing number of model parameters, the requirement to train on large datasets be-

1In Chapter 6, we investigate in detail several shortcomings of the learned position embedding
scheme
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came inevitable - as otherwise it is not possible to fully train the model parameters.

However, it is challenging to design tasks of such scale due to extremely expensive

annotation costs. In contrast, it is relatively easy to obtain large-scale unlabeled cor-

pora, typically through scraping the internet Raffel et al. [2020] or collecting all literary

works Zhu et al. [2015]. Thus emerged the idea of pre-training [Mikolov et al., 2013a,

Peters et al., 2018], where a massive, unlabeled corpus is leveraged to train a language

model, i.e. predicting the probability of tokens given the context (§2.1.2). Given an in-

put context, the aim of a given model is to compute a representation of the same, in

order to predict the next token probability distribution, typically in the form of a soft-

max function over the full vocabulary. Learning such a language model on top of the

massive corpora yields better contextual token representation, which are then utilized

to perform various downstream tasks. The large, unlabeled data can be leveraged to

learn useful word embeddings either using pairwise ranking [Collobert and Weston,

2008], or through the use of shallow architectures [Mikolov et al., 2013a], or by com-

puting global word-word co-occurence statistics [Pennington et al., 2014]. However,

these pre-trained word embeddings are still context-independent, and requires learn-

ing context-dependent parameters from scratch on the downstream task. Thus, efforts

have been made to pre-train the entire model parameters instead of generating word

embeddings by training in a language modeling objective, using bidirectional LSTM

based architectures [Peters et al., 2018]. These models are then used to fine-tune on

downstream tasks such as text classification [Howard and Ruder, 2018].

More recently, Transformer-based architectures became widely popular with the

introduction of BERT [Devlin et al., 2019b]. BERT is fundamentally a stack of Trans-

former layers, having multiple self-attention heads. To learn its massive amount of

parameters, BERT is pre-trained on unlabeled corpora using two self-supervised train-

ing objectives: masked language modeling (MLM) and next sentence prediction (NSP)

(predicting if two sentences are adjacent to each other). In MLM, an input sentence is
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corrupted by randomly masking some percentage of tokens, and the objective of the

model is to leverage the context to predict the correct masked tokens. In NSP, BERT

is provided an additional objective to predict if two given sentences are neighbors 2.

BERT significantly improved the state-of-the art in many downstream tasks - rang-

ing from text classication, question answering, natural language inference, machine

translation, summarizatio, to name a few. Subsequently, several flavor of Transformer

models have been proposed, which can be broadly classified into three distinct classes:

• Encoder-only models This model family only consists of a n layered Transformer

model as the encoder, such as BERT [Devlin et al., 2019b]. This class of models

is utilized to extract generalized representations of sentences, which can be fur-

ther used in downstream tasks. RoBERTa [Liu et al., 2019b], DistilBERT [Sanh

et al., 2020], ALBERT [Lan et al., 2019], ELECTRA [Clark et al., 2020a] are other

examples of this class of model.

• Encoder-Decoder models This is a two-step model, which was originally defined

in Vaswani et al. [2017]. The model architecture contains two separate stacked

Transformer layers, where the first stack is used to encode the sentence represen-

tation, and the second stack is used to generate the target text conditioned on the

encoded representation (i.e., to decode). BART [Lewis et al., 2020b], mBART [Liu

et al., 2020], T5 [Raffel et al., 2020] are more examples of this class of models.

• Decoder-only models In this family of models, they consist of only the decoder

element to predict the text from a given input, without having a dedicated en-

coder block. The goal of these models if the predict the next token given a sen-

tence or paragraph. GPT2 [Radford et al., 2019a], GPT-3 [Brown et al., 2020],

Transformer-XL Dai et al. [2019] are models of this type.

2In the followup works, such as RoBERTa, the NSP objective has been subsequently discarded in
favor of pure MLM objective on larger batch sizes.
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Transformer models can also be classified based on the type of training objective

used while pre-training. Broadly, they can be grouped into two classes:

• Masked Language Models Popularized by BERT [Devlin et al., 2019b], this fam-

ily of models in its core uses the technique of predicting the masked tokens in a

given corrupted input. Thus, these type of models are typically bidirectional, as

in they have the ability to leverage contextual information in the input sentence

from both directions. RoBERTa, BART, ALBERT, ELECTRA etc are examples of

this class of Transformer models.

• Autoregressive Language Models On the other hand, the vanilla Transformer

model was proposed as an autoregressive model, where the model does not

have the contextual information from both directions of the input. These models

mimic the classical language model setup (§2.1.2), where given a sequence of to-

kens the model only uses the previously seen tokens as context to generate the

next set of tokens, hence they are also known as uni-directional models. GPT-2,

GPT-3, T5, Transformer-XL are examples of this class of Transformer models.

2.3 Evaluation of text representation capacity

2.3.1 Standard tasks for measuring progress in NLU

With the advent of better and higher capacity models to represent text, the need for

evaluating the progress in natural language understanding (NLU) gave rise to de-

velopment of various tasks and datasets. Popular instances of the datasets include

SQUAD [Rajpurkar et al., 2016] for Question Answering; SNLI [Bowman et al., 2015]

and MNLI [Williams et al., 2018c] for Natural Language Inference; DecaNLP [McCann

et al., 2018] and the venerable GLUE [Wang et al., 2018] and SuperGLUE [Wang et al.,

2019] benchmarks for general language understanding. The GLUE benchmark was
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proposed to unify the measurement of progress in language understanding by using a

collection of publicly released datasets:

• Corpus of Linguistic Acceptability [CoLA, Warstadt et al., 2019c]

• Stanford Sentiment Treebank [SST, Socher et al., 2013]

• Microsoft Research Paragraph Corpus [MRPC, Dolan and Brockett, 2005]

• Quora Question Pairs (QQP)3

• Multi-Genre Natural Language Inference [MNLI, Williams et al., 2018c]

• Question NLI [QNLI, Rajpurkar et al., 2016, Demszky et al., 2018]

• Recognizing Textual Entailment [RTE, Giampiccolo et al., 2007a, Haim et al., 2006,

Giampiccolo et al., 2007b, Bentivogli et al., 2009]

• NLI formulation of the Winograd Schema Challenge [WNLI, Levesque et al.,

2011].

The SuperGLUE benchmark [Wang et al., 2019] was proposed following the success of

GLUE as a much harder benchmark. This benchmark consist of the following datasets:

• Boolean Questions [BoolQ, Clark et al., 2019a]

• Commitment Bank [CB, De Marneffe et al., 2019]

• Choice of Plausible Alternatives [COPA, Roemmele et al., 2011]

• Multi-Sentence Reading Comprehension [MultiRC, Khashabi et al., 2018]

• Reading Comprehension with Commonsense Reasoning Dataset [ReCoRD, Zhang

et al., 2018]
3http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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• Recognizing Textual Entailment [RTE, Giampiccolo et al., 2007a, Haim et al., 2006,

Giampiccolo et al., 2007b, Bentivogli et al., 2009]

• Word-in-Context [WiC, Pilehvar and Camacho-Collados, 2019]

• Winograd Schema Challenge [WSC, Levesque et al., 2011]

Using these benchmarks, text understanding systems have been compared against

each other to measure progress in the field. While RNNs and LSTMs exhibited mod-

est performance in these tasks, the advent of attention mechanisms [Bahdanau et al.,

2014] increased the performance to considerable extent. However, we witnessed me-

teoric improvements on these benchmarks with every release of a new variant of the

Transformer model, which typically consists of increasingly large amount of parame-

ters and have been progressively trained on greater amount of unlabeled data [Kaplan

et al., 2020]. The performance rise has even skyrocketed beyond human performance

on these tasks [Kiela et al., 2021, Figure 1]. This stunning progress with the pre-trained

Transformer family of models on NLU taks have attracted greater investments in pre-

training even larger models [Brown et al., 2020, Zhang et al., 2022b]; invited researchers

to dig deep into the reasoning process employed by these models [Rogers et al., 2020];

and have invited a higher level of scrutiny of the model outputs [Jia and Liang, 2017,

Gururangan et al., 2018].

2.3.2 Analysis and Interpretability

The sheer performance of pre-trained Transformer-based models following BERT cre-

ated a watershed moment in NLU, as these models outperform previous LSTM-based

models by a large extent, even surpassing human performance. Due to this success, in-

terest peaked in the community to investigate the inner workings of this largely black

box model [Rogers et al., 2020]. The investigation is primarily done using the tool

of probing, which consists of learning a function on top of pre-trained representations
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to perform targeted assesment of linguistic information [Hupkes et al., 2018]. How

well this probe learns a given signal can be seen as a proxy for linguistic knowledge

encoded in the representations. Using these probes, it has been shown BERT represen-

tations contain adequate syntactic [Hewitt and Manning, 2019, Jawahar et al., 2019a],

semantic [Tenney et al., 2019, Ettinger, 2020], and world knowledge [Petroni et al., 2019,

Rogers et al., 2020].

2.3.3 Brittleness issues in NLU models

Despite the large performance gain and representations containing the necessary lin-

guistic information to process natural language, state-of-the-art NLU models are of-

ten subject to scrutiny due to their unsystematic behaviors on specifically crafted test

suites. NLU models are repeatedly shown to be brittle when subject to adversarial at-

tacks Jia and Liang [2017], Ettinger et al. [2017], Ettinger [2020] to the input sentence

forms Kaushik and Lipton [2018]. NLU models tend to exploit the statistical irregu-

larities and annotation artefacts Gururangan et al. [2018], Poliak et al. [2018], Tsuchiya

[2018] of a given datasets, resulting in failure cases on carefully crafted examples Naik

et al. [2018], McCoy et al. [2019a]. NLU models are also subjected to tests of system-

atic generalization in context of semantic parsing in novel compositions Lake and Ba-

roni [2018], shuffled argument structure in natural language inference Dasgupta et al.

[2018], etc. On these tests, typically the NLU models fail to behave in the expected

ways, unless trained with the same objective as the test sets.

2.3.4 The need for better, challenging benchmarks

How well have our best, state-of-the-art models have progressed in human-level lan-

guage representation? We get a conflicting answer on the question. On one hand, we

witness an ever increasing performance improvement on standard tasks with larger

amount of parameters and longer pre-training with more data. On the other hand, we



2 Background 26

witness a stream of results showcasing the brittleness and inconsistencies of the model

outputs, so much so that they fail on real world examples, unlike humans. Thus, at-

tempts have been made to develop better benchmarks, such as Dynabench [Kiela et al.,

2021]. In Dynabench, models are constantly evaluated in a loop where human anno-

tators are tasked to find harder examples to elicit an undesirable result. Dynabench

is a great step in the right direction, however it poses some caveats: continuous data

collection from annotators is an expensive endeavour, and the challenge nature of data

collection could lead to unnatural distribution shifts [Kiela et al., 2021, Section 4, pp.

7]. The community has also invested in building newer dataset benchmarks, and have

progressed to measuring zero-shot and few-shot in-context learning evaluations to pose

a significant challenge to the model. However, by nature the Transformer language

models require pre-training on massive corpora, which could possibly lead to high

distribution overlap between the model representation and the test dataset, result-

ing in memorization effects on the datasets constructed from public corpus [Carlini

et al., 2021, 2022]. Thus, we need a better mechanisms and datasets to measure the real

progress of text understanding using neural models.

2.4 Measuring language understanding progress using Systematicity

An alternative to measuring human-level language understanding progress is by em-

ploying the notions of systematicity in designing datasets and experiments. The term

is first introduced by Fodor and Pylyshyn [1988], which is defined as “the ability to

produce/understand some sentences is intrinsically connected to the ability to produce/under-

stand certain others”. This definition comes with varying interpretations in the literature

[Lake and Baroni, 2018, Bahdanau et al., 2019, Goodwin et al., 2020] and is heavily de-

bated based on its interpretation [Szabó, 2012, Herbelot, 2020]. Systematicity is also

closely tied to the concept of compositionality, which requires models to have the abil-
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ity to compose and combine distinct functions to construct meaning representation

[Kratzer and Heim, 1998, Szabó, 2012]. Another term synonymous to systematicity in

context is productivity, which construes the ability of a model to generate infinite com-

binations of known constituents [Pullum et al., 2010]. For the purposes of this thesis,

systematicity can be formulated into two categories:

• The ability of the model to understand the recombination of known parts and

rules. In the classic example, a learner understanding the phrase “brown dog”

and “black cat” also understands “brown cat” [Hupkes et al., 2020].

• The ability of the model to extract consistent contributions from words. For exam-

ple, a learner understanding the phrase “John loves Mary” must also understand

the contributions of the words “Mary loves John” [Goodwin et al., 2020].

It is heavily debated in the literature whether connectionist architectures, such as the

neural models, could account for the notions of systematicity [Fodor and Pylyshyn,

1988, Smolensky, 1991, Marcus, 1998]. Nevertheless, the above definition of system-

aticity allows us to evaluate the human-ness of the language understanding models.

Systematic models employ the notions of compositionality in their representations to

understand the contributions of words in the given text. Thus, a model following the

principles of systematicity should exhibit the following properties:

• A systematic model should be generalizable to out-of-distribution examples: any

out-of-distribution example can be decomposed into known rules of syntax and

meaning.

• It should be robust to outliers and adversarial inputs: any adversarial input will

not conform with the application of known rules and thus can allow the model

to circumvent processing on those inputs.
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• It should be consistent in its understanding of words: if the rules required to

understand a phrase is learned then they should yield consistent representations

of the same phrase (or vice-versa, if the rule is not learned then a systematic

model should not yield any useful representation for the given input).

In this thesis, we utilize the above principles of systematicity to evaluate the limits

of natural language understanding of state-of-the-art NLU models.
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Chapter 3

Understanding semantic generalization

through systematicity

Natural Language Understanding (NLU) systems have been extremely successful at

reading comprehension tasks, such as question answering (QA) and natural language

inference (NLI). These tasks typically test for semantic generalization, where a model

has to understand the meaning of the input sentence / passage in order to perform

the given task. An array of existing datasets are available for these tasks. This includes

datasets that test a system’s ability to extract factual answers from text [Rajpurkar et al.,

2016, Nguyen et al., 2016, Trischler et al., 2016, Mostafazadeh et al., 2016, Su et al., 2016],

as well as datasets that emphasize commonsense inference, such as entailment between

sentences [Bowman et al., 2015, Williams et al., 2018c].

However, there are growing concerns regarding the ability of NLU systems—and

neural networks more generally—to generalize in a systematic and robust way [Bah-

danau et al., 2019, Lake and Baroni, 2018, Johnson et al., 2017]. For instance, recent

work has highlighted the brittleness of NLU systems to adversarial examples [Jia and

Liang, 2017], as well as the fact that NLU models tend to exploit statistical artifacts in

datasets, rather than exhibiting true reasoning and generalization capabilities [Guru-
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rangan et al., 2018, Kaushik and Lipton, 2018]. These findings have also dovetailed

with the recent dominance of large pre-trained language models, such as BERT, on

NLU benchmarks [Devlin et al., 2019b, Peters et al., 2018], which suggest that the pri-

mary difficulty in these datasets is incorporating the statistics of the natural language,

rather than reasoning.

An important challenge is thus to develop NLU benchmarks that can precisely

test a model’s capability for robust and systematic generalization. Ideally, we want

language understanding systems that can not only answer questions and draw infer-

ences from text, but that can also do so in a systematic, logical, and robust way. While

such reasoning capabilities are certainly required for many existing NLU tasks, most

datasets combine several challenges of language understanding into one, such as co-

reference/entity resolution, incorporating world knowledge, and semantic parsing—

making it difficult to isolate and diagnose a model’s capabilities for systematic gener-

alization and robustness.

In this work, we propose to use the properties of systematicity to test the limits of

semantic generalization of modern neural networks (§2.4). As defined by Fodor and

Pylyshyn [1988], systematicity test the ability of a system to understand the recombina-

tion of known parts and rules. Thus, inspired by the classic AI challenge of inductive

logic programming [Quinlan, 1990], in this chapter I discuss my work on developing

semi-synthetic benchmark designed to explicitly test an NLU model’s ability for sys-

tematic and robust logical generalization [Sinha et al., 2019]. Our benchmark suite—

termed CLUTRR (Compositional Language Understanding and Text-based Relational

Reasoning)—contains a large set of semi-synthetic stories involving hypothetical fam-

ilies. Given a story, the goal is to infer the relationship between two family members,

whose relationship is not explicitly mentioned. To solve this task, a learning agent

must extract the relationships mentioned in the text, induce the logical rules govern-

ing the kinship relationships (e.g., the transitivity of the sibling relation), and use a
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combination of these rules to infer the relationship between a given pair of entities.

Crucially, the CLUTRR benchmark allows us to test a learning agent’s ability for sys-

tematic generalization by testing on stories that contain unseen combinations of logical

rules. CLUTRR also allows us to precisely test for the various forms of model robustness

by adding different kinds of superfluous noise facts to the stories.

3.1 Technical Background

3.1.1 Notations and Terminology

Following standard practice in formal semantics, we use the term atom to refer to a

predicate symbol and a list of terms, such as [grandfatherOf,X,Y ], where the pred-

icate grandfatherOf denotes the relation between the two variables, X and Y . We

restrict the predicates to have an arity of 2, i.e., binary predicates. A logical rule in this

setting is of the form H ⊢ B, where B is the body of the rule, i.e., a conjunction of two

atoms ([α1, α2]) and H is the head, i.e., a single atom (α) that can be viewed as the goal

or query. For instance, given a knowledge base (KB) R that contains the single rule

[grandfatherOf,X,Y ] ⊢ [[fatherOf,X,Z], [fatherOf,Z,Y ]], (3.1)

the query [grandfatherOf,X,Y ] evaluates to true if and only if the body

B = [[fatherOf,X,Z], [fatherOf,Z,Y ]] (3.2)

is also true in a given world. A rule is called a grounded rule if all atoms in the rule are

themselves grounded, i.e., all variables are replaced with constants or entities in a world.

A fact is a grounded binary predicate. A clause is a conjunction of two or more atoms

(C = (HC ⊢ BC = ([α1, ..., αn]))) which can be built using a set of rules.
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Figure 3.1 Data generation pipeline. Step 1: generate a kinship graph. Step
2: sample a target fact. Step 3: Use backward chaining to sample a set of
facts. Step 4: Convert sampled facts to a natural language story.

3.2 Overview and construction of CLUTRR

The core idea behind the CLUTRR benchmark suite is the following: Given a natural

language story describing a set of kinship relations, the goal is to infer the relationship

between two entities, whose relationship is not explicitly stated in the story. To generate

these stories, we first design a knowledge base (KB) with rules specifying how kinship

relations resolve, and we use the following steps to create semi-synthetic stories based

on this knowledge base:

Step 1. Generate a random kinship graph that satisfies the rules in our KB.

Step 2. Sample a target fact (i.e., relation) to predict from the kinship graph.

Step 3. Apply backward chaining to sample a set of facts that can prove the target re-

lation (and optionally sample a set of “distracting” or “irrelevant” noise facts).

Step 4. Convert the sampled facts into a natural language story through pre-specified

text templates and crowd-sourced paraphrasing.

Figure 3.1 provides a high-level overview of this idea, and the following subsec-

tions describe the data generation process in detail, as well as the diagnostic flexibility
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afforded by CLUTRR.

The short stories in CLUTRR are essentially narrativized renderings of a set of log-

ical facts. In the following sections, we describe how we sample the logical facts that

make up a story by generating random kinship graphs and using backward chaining

to produce logical reasoning chains.

3.2.1 Graph generation

To generate a kinship graph (say, G) underlying a particular story, we first sample a

set of gendered1 entities and kinship relations using a stochastic generation process.

This generation process contains a number of tunable parameters—such as the max-

imum number of children at each node, the probability of an entity being married

to another entity, etc.—and is designed to produce a valid, but possibly incomplete

“backbone graph”. For instance, this backbone graph generation process will specify

“parent”/“child” relations between entities but does not add “grandparent” relations.

After this initial generation process, we recursively apply the logical rules in R to the

backbone graph to produce a final graphG that contains the full set of kinship relations

between all the entities. 2

In the CLUTRR Benchmark, the following kinship relations are used: son, father,

husband, brother, grandson, grandfather, son-in-law, father-in-law, brother-in-law, uncle, nephew,

daughter, mother, wife, sister, granddaughter, grandmother, daughter-in-law, mother-in-law,

sister-in-law, aunt, niece.
1Kinship and gender roles are oversimplified in our data (compared to the real world) to maintain

tractability.
2In the context of our data generation process, we distinguish between the knowledge base, R, which

contains a finite number of predicates and rules specifying how kinship relations in a family resolve, and
a particular kinship graph G, which contains a grounded set of atoms specifying the particular kinship
relations that underlie a single story. In other words, R contains the logical rules that govern all the
generated stories in CLUTRR, while G contains the grounded facts that underlie a specific story.
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[grand,X,Y ] ⊢ [[child,X,Z], [child,Z,Y ]],

[grand,X,Y ] ⊢ [[SO,X,Z], [grand,Z,Y ]],

[grand,X,Y ] ⊢ [[grand,X,Z], [sibling,Z,Y ]],

[inv-grand,X,Y ] ⊢ [[inv-child,X,Z], [inv-child,Z,Y ]],

[inv-grand,X,Y ] ⊢ [[sibling,X,Z], [inv-grand,Z,Y ]],

[child,X,Y ] ⊢ [[child,X,Z], [sibling,Z,Y ]],

[child,X,Y ] ⊢ [[SO,X,Z], [child,Z,Y ]],

[inv-child,X,Y ] ⊢ [[sibling,X,Z], [inv-child,Z,Y ]],

[inv-child,X,Y ] ⊢ [[child,X,Z], [inv-grand,Z,Y ]],

[sibling,X,Y ] ⊢ [[child,X,Z], [inv-un,Z,Y ]],

[sibling,X,Y ] ⊢ [[inv-child,X,Z], [child,Z,Y ]]

[sibling,X,Y ] ⊢ [[sibling,X,Z], [sibling,Z,Y ]],

[in-law,X,Y ] ⊢ [[child,X,Z], [SO,Z,Y ]],

[inv-in-law,X,Y ] ⊢ [[SO,X,Z], [inv-child,Z,Y ]],

[un,X,Y ] ⊢ [[sibling,X,Z], [child,Z,Y ]],

[inv-un,X,Y ] ⊢ [[inv-child,X,Z], [sibling,Z,Y ]],

We used a small, tractable, and logically sound KB of rules as mentioned above.

We carefully select this set of deterministic rules to avoid ambiguity in the resolution.

We use gender-neutral predicates and resolve the gender of the predicate in the head

H of a clause C by deducing the gender of the second constant. We have two types of

predicates, vertical predicates (parent-child relations) and horizontal predicates (sibling

or significant other). We denote all the vertical predicates by its child-to-parent rela-

tion and append the prefix inv- to the predicates for the corresponding parent-to-child

relation. For example, grandfatherOf is denoted by the gender-neutral predicate

[inv-grand,X,Y ], where the gender is determined by the gender of Y .
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3.2.2 Backward chaining

The resulting graph G provides the background knowledge for a specific story, as each

edge in this graph can be treated as a grounded predicate (i.e., fact) between two en-

tities. From this graph G, we sample the facts that make up the story, as well as the

target fact that we seek to predict: First, we (uniformly) sample a target relation HC ,

which is the fact that we want to predict from the story. Then, from this target relation

HC , we run a simple variation of the backward chaining [Gallaire and Minker, 1978] al-

gorithm for k iterations starting fromHC , where at each iteration we uniformly sample

a subgoal to resolve and then uniformly sample a KB rule that resolves this subgoal.

Crucially, unlike traditional backward chaining, we do not stop the algorithm when a

proof is obtained; instead, we run for a fixed number of iterations k in order to sample

a set of k facts BC that imply the target relationHC .

3.2.3 Adding natural language

So far, we have described the process of generating a conjunctive logical clause C =

(HC ⊢ BC), where HC = [α∗] is the target fact (i.e., relation) we seek to predict and

BC = [α1, ..., αk] is the set of supporting facts that imply the target relation. We now de-

scribe how we convert this logical representation to natural language through crowd-

sourcing.

Paraphrasing using Amazon Mechanical Turk

We use Amazon Mechanical Turk (AMT), an online platform for collecting annota-

tions from crowd-workers 3. The platform supports a mechanism to quickly annotate

large amounts of data by paying anonymous workers for their effort. In our work,

the crowd-workers are shown a set of facts BC corresponding to a story and then they

3https://www.mturk.com/

https://www.mturk.com/
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are asked to paraphrase these facts into a narrative. Since workers are given a set of

facts BC to work from, they are able to combine and split multiple facts across separate

sentences and construct diverse narratives (Figure 3.3).

We use ParlAI [Miller et al., 2017] Mturk interface to collect paraphrases from the

users. Specifically, given a set of facts, we ask the users to paraphrase the facts into

a story. The users (turkers) are free to construct any story they like as long as they

mention all the entities and all the relations among them. We also provide the head H

of the clause as an inferred relation and specifically instruct the users to not mention it in

the paraphrased story. In order to evaluate the paraphrased stories, we ask the turkers

to peer review a story paraphrased by a different turker. Since there are two tasks -

paraphrasing a story and rating a story - we choose to pay 0.5$ for each annotation. A

sample task description in our MTurk interface is as follows:

In this task, you will need to write a short, simple story based on a few facts. It

is crucial that the story mentions each of the given facts at least once. The story

does not need to be complicated! It just needs to be grammatical and mention the

required facts.

After writing the story, you will be asked to evaluate the quality of a generated

story (based on a different set of facts). It is crucial that you check whether the

generated story mentions each of the required facts.

Example of good and bad stories: Good Example

Facts to Mention

• John is the father of Sylvia.

• Sylvia has a brother Patrick.

Implied Fact: John is the father of Patrick.

Written story
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John is the proud father of the lovely Sylvia. Sylvia has a love-hate relationship

with her brother Patrick.

Bad Example

Facts to Mention

• Vincent is the son of Tim.

• Martha is the wife of Tim.

Implied Fact : Martha is Vincent’s mother.

Written story

Vincent is married at Tim and his mother is Martha.

The reason the above story is bad:

• This story is bad because it is nonsense / ungrammatical.

• This story is bad because it does not mention the proper facts.

• This story is bad because it reveals the implied fact.

A sample of the AMT interface is shown in Figure 3.2. To ensure that the turkers

are providing high-quality annotations without revealing the inferred fact, we also

launch another task to ask the turkers to rate three annotations to be either good or bad

which are provided by a set of different turkers. We pay 0.2$ for each HIT consisting

of three reviews. This helped to remove logical and grammatical inconsistencies to

a large extent. Based on the reviews, 79% of the collected paraphrases passed the

peer-review sanity check where all the reviewers agree on the quality. This subset of

the placeholders is used in the benchmark. A sample of programmatically generated

dataset for clause length of k = 2 to k = 6 is provided in the tables 3.3 to 3.7.
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Figure 3.2 Amazon Mechanical Turker Interface built using ParlAI which
was used to collect data as well as peer reviews.

Reusability and composition

One challenge for data collection via AMT is that the number of possible stories gener-

ated by CLUTRR grows combinatorially as the number of supporting facts increases,

i.e., as k = |BC| grows. This combinatorial explosion for large k—combined with the dif-

ficulty of maintaining the quality of the crowd-sourced paraphrasing for long stories—

makes it infeasible to obtain a large number of paraphrased examples for k > 3. To

circumvent this issue and increase the flexibility of our benchmark, we reuse and com-

pose AMT paraphrases to generate longer stories. In particular, we collected para-

phrases for stories containing k = 1,2,3 supporting facts and then replaced the enti-

ties from these collected stories with placeholders in order to re-use them to generate

longer semi-synthetic stories. An example of a story generated by stitching together

two shorter paraphrases is provided below:
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[Frank] went to the park with his father, [Brett]. [Frank] called his brother [Boyd]

on the phone. He wanted to go out for some beers. [Boyd] went to the baseball

game with his son [Jim].

Q: What is [Brett] and [Jim]’s relationship?

Thus, instead of simply collecting paraphrases for a fixed number of stories, we instead

obtain a diverse collection of natural language templates that can be programmatically

recombined to generate stories with various properties.

3.2.4 AMT Template statistics

Number of Paraphrases # clauses

k = 1 1,868 20
k = 2 1,890 58
k = 3 2,258 236

Total 6,016

Unique Word Count 3,797

Jaccard Word Overlap Unigrams 0.201
Bigrams 0.0385

Table 3.1 Statistics of the AMT paraphrases. Jaccard word overlap is cal-
culated within the templates of each individual clause of length k.

At the time of submission, we have collected 6,016 unique paraphrases with an av-

erage of 19 paraphrases for every possible logical clause of length k = 1,2,3. Table 3.1

contains summary statistics of the collected paraphrases. Overall, we found high lin-

guistic diversity in the collected paraphrases. For instance, the average Jaccard overlap

in unigrams between pairs paraphrases corresponding to the same logical clause was

only 0.201 and only 0.0385 for bigrams.

3.2.5 Human performance

To get a sense of the data quality and difficulty involved in CLUTRR, we asked human

annotators to solve the task for random examples of length k = 2,3, ...,6. (Table 3.2)
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Relation Length Human Performance Reported DifficultyTime Limited Unlimited Time

2 0.848 1 1.488 +- 1.25
3 0.773 1 2.41 +- 1.33
4 0.477 1 3.81 +- 1.46
5 0.424 1 3.78 +- 0.96
6 0.406 1 4.46 +- 0.87

Table 3.2 Human performance accuracies on CLUTRR dataset. Humans
are provided the Clean-Generalization version of the dataset, and we test
on two scenarios: when a human is given limited time to solve the task, and
when a human is given unlimited time to solve the task. Regardless of time,
our evaluators provide a score of difficulty of individual puzzles.

We perform the evaluation in two scenarios: first a time-limited scenario where we ask

AMT Turkers to solve the puzzle in a fixed time. Turkers were provided a maximum

time of 30 mins, but they solved the puzzles in an average of 1 minute 23 seconds.

Secondly, we use another set of expert evaluators who are given ample time to solve

the tasks. Not surprisingly, if a human being is given ample time (experts took an

average of 6 minutes per puzzle) and a pen and a paper to aid in the reasoning, they

get all the relations correct. However, if an evaluator is short of time, they might miss

important details on the relations and perform poorly. Thus, our tasks require active

attention.

We found that time-constrained AMT annotators performed well (i.e., > 70%) accu-

racy for k ≤ 3 but struggled with examples involving longer stories, achieving 40-50%

accuracy for k > 3. However, trained annotators with unlimited time were able to

solve 100% of the examples, highlighting the fact that this task requires attention and

involved reasoning, even for humans.



3 Understanding semantic generalization through systematicity 41

Figure 3.3 Illustration of how a set of facts can split and combined in vari-
ous ways across sentences.

3.2.6 Representing the question and entities

The AMT paraphrasing approach described above allows us to convert the set of sup-

porting facts BC to a natural language story, which can be used to predict the target

relation/query HC . However, instead of converting the target query, HC = [α∗], to a

natural language question, we instead opt to represent the target query as a K-way

classification task, where the two entities in the target relation are provided as input

and the goal is to classify the relation that holds between these two entities. This repre-

sentation avoids the pitfall of revealing information about the answer in the question

[Kaushik and Lipton, 2018].

When generating stories, entity names are randomly drawn from a set of 300 com-

mon gendered English names. Thus, depending on each run, the entities are never the

same. This ensures that the entity names are simply placeholders and uncorrelated

from the task.
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Figure 3.4 Noise generation procedures of CLUTRR.

3.3 Experimental Setups

The modular nature of CLUTRR provides rich diagnostic capabilities for evaluating the

robustness and generalization abilities of neural language understanding systems. We

highlight some key diagnostic capabilities available via different variations of CLUTRR

below. These diagnostic variations correspond to the concrete datasets that we gener-

ated in this work, and we describe the results on these datasets in §3.5.

3.3.1 Systematic generalization

Most prominently, CLUTRR allows us to explicitly evaluate a model’s ability for gen-

eralizing with the property of systematicity. In particular, we rely on the following

hold-out procedures to test systematic generalization:

• During training, we hold out a subset of the collected paraphrases, and we only use

this held-out subset of paraphrases when generating the test set. Thus, to succeed

on CLUTRR, an NLU system must exhibit linguistic generalization and be robust to

linguistic variation at test time.

• We also hold out a subset of the logical clauses during training (for clauses of length

k > 2).4 In other words, during training, the model sees all logical rules but does not

4One should not holdout clauses from length k = 2 in order to allow models to learn the composi-
tionality of all possible binary predicates.
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see all combinations of these logical rules. Thus, in addition to linguistic generaliza-

tion, success on this task also requires logical generalization.

• Lastly, as a more extreme form of both logical and linguistic generalization, we con-

sider the setting where the models are trained on stories generated from clauses of

length ≤ k and evaluated on stories generated from larger clauses of length > k.

Thus, we explicitly test the ability for models to generalize on examples that require

more steps of reasoning that any example they encountered during training.

3.3.2 Robust Reasoning

In addition to evaluating systematic generalization, the modular setup of CLUTRR

also allows us to diagnose model robustness by adding noise facts to the generated

narratives. Due to the controlled semi-synthetic nature of CLUTRR, we are able to

provide a precise taxonomy of the kinds of noise facts that can be added (Figure 3.4). In

order to structure this taxonomy, it is important to recall that any set of supporting facts

BC generated by CLUTRR can be interpreted as a path, pC , in the corresponding kinship

graph G (Figure 3.1). Based on this interpretation, we view adding noise facts from the

perspective of sampling three different types of noise paths, pn, from the kinship graph

G:

• Irrelevant facts: We add a path pn, which has exactly one shared end-point with pc. In

this way, this is a distractor path, which contains facts that are connected to one of the

entities in the target relation, HC , but do not provide any information that could be

used to help answer the query.

• Supporting facts: We add a path pn, whose two end-points are on the path pC . The facts

on this path pn are noise because they are not needed to answer the query, but they

are supporting facts because they can, in principle, be used to construct alternative

(longer) reasoning paths that connect the two target entities.

• Disconnected facts: We add paths which neither originate nor end in any entity on pc.
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These disconnected facts involve entities and relations that are completely unrelated

to the target query.

3.3.3 Generated Datasets

For all experiments, we generated datasets with 10-15k training examples. In many

experiments, we report training and testing results on stories with different clause

lengths k. (For brevity, we use the phrase “clause length” throughout this section to

refer to the value k = |BC|, i.e., the number of steps of reasoning that are required to

predict the target query.) In all cases, the training set contains 5000 train stories per k

value, and, during testing, all experiments use 100 test stories per k value. All exper-

iments were run 10 times with different randomly generated stories, and means and

standard errors over these 10 runs are reported. As discussed above, during training

we holdout 20% of the paraphrases, as well as 10% of the possible logical clauses.

Table 3.3 Snapshot of puzzles in the dataset for k=2
Puzzle Question Gender Answer

Charles’s son Christopher entered re-
hab for the ninth time at the age of
thirty. Randolph had a nephew called
Christopher who had n’t seen for a
number of years.

Randolph is the _____ of Charles
Charles:male,
Christopher:male,
Randolph:male

brother

Randolph and his sister Sharon went to
the park. Arthur went to the baseball
game with his son Randolph

. Sharon is the _____ of Arthur
Arthur:male,
Randolph:male,
Sharon:female

daughter

Frank went to the park with his father,
Brett. Frank called his brother Boyd on
the phone. He wanted to go out for
some beers.

Brett is the _____ of Boyd
Boyd:male,
Frank:male,
Brett:male

father

3.4 Evaluated Models

Our primary baselines are neural language understanding models that take unstruc-

tured text as input. We consider bidirectional LSTMs [Hochreiter and Schmidhuber,

1997, Cho et al., 2014] (with and without attention), as well as models that aim to incor-

porate inductive biases towards relational reasoning: Relation Networks (RN) [Santoro
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Table 3.4 Snapshot of puzzles in the dataset for k=3
Puzzle Question Gender Answer

Roger was playing baseball with his
sons Sam and Leon. Sam had to take
a break though because he needed to
call his sister Robin.

Leon is the _____ of Robin

Robin:female,
Sam:male,
Roger:male,
Leon:male

brother

Elvira and her daughter Nancy went
shopping together last Monday and
they bought new shoes for Elvira’s
kids. Pedro and his sister Allison went
to the fair. Pedro’s mother, Nancy, was
out with friends for the day.

Elvira is the _____ of Allison

Allison:female,
Pedro:male,
Nancy:female,
Elvira:female

grandmother

Roger met up with his sister Nancy
and her daughter Cynthia at the mall
to go shopping together. Cynthia’s
brother Pedro was going to be the star
in the new show.

Pedro is the _____ of Roger

Roger:male,
Nancy:female,
Cynthia:female,
Pedro:male

nephew

Table 3.5 Snapshot of puzzles in the dataset for k=4
Puzzle Question Gender Answer

Celina has been visiting her sister,
Fran all week. Fran is also the daugh-
ter of Bethany. Ronald loves visiting
his aunt Bethany over the weekends.
Samuel’s son Ronald entered rehab for
the ninth time at the age of thirty.

Celina is the _____ of Samuel

Samuel:male,
Ronald:male,
Bethany:female,
Fran:female,
Celina:female

niece

Celina adores her daughter Bethany.
Bethany loves her very much, too.
Jackie called her mother Bethany to let
her know she will be back home soon.
Thomas was helping his daughter Fran
with her homework at home. Af-
terwards, Fran and her sister Jackie
played Xbox together.

Celina is the _____ of Thomas

Thomas:male,
Fran:female,
Jackie:female,
Bethany:female,
Celina:female

daughter

Raquel is Samuel ’daughter and they
go shopping at least twice a week to-
gether. Kenneth and her mom, Theresa,
had a big fight. Theresa’s son, Ronald,
refused to get involved. Ronald was
having an argument with her sister,
Raquel.

Samuel is the _____ of Kenneth

Kenneth:male,
Theresa:female,
Ronald:male,
Raquel:female,
Samuel:male

father
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Table 3.6 Snapshot of puzzles in the dataset for k=5
Puzzle Question Gender Answer

Steven’s son is Bradford. Bradford and
his father always go fishing together
on Sundays and have a great time to-
gether. Diane is taking her brother
Brad out for a late dinner. Kristin,
Brad’s mother, is home with a cold.
Diane’s father Elmer, and his brother
Steven, all got into the rental car to
start the long cross-country roadtrip
they had been planning.

Bradford is the _____ of Kristin

Kristin:female,
Brad:male,
Diane:female,
Elmer:male,
Steven:male,
Bradford:male

nephew

Elmer went on a roadtrip with his
youngest child, Brad. Lena and her sis-
ter Diane are going to a restaurant for
lunch. Lena’s brother Brad is going to
meet them there with his father Elmer
Brad ca n’t stand his unfriendly aunt
Lizzie.

Lizzie is the _____ of Diane

Diane:female,
Lena:female,
Brad:male,
Elmer:male,
Lizzie:female

aunt

Ira took his niece April fishing Sat-
urday. They caught a couple small
fish. Ronald was enjoying spending
time with his parents, Damion and
Claudine. Damion’s other son, Dennis,
wanted to come visit too. Dennis of-
ten goes out for lunch with his sister,
April.

Ira is the _____ of Claudine

Claudine:female,
Ronald:male,
Damion:male,
Dennis:male,
April:female,
Ira:male

brother
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Table 3.7 Snapshot of puzzles in the dataset for k=6
Puzzle Question Gender Answer

Mario wanted to get a good gift for
his sister, Marianne. Jean and her sis-
ter Darlene were going to a party held
by Jean’s mom, Marianne. Darlene in-
vited her brother Roy to come, too,
but he was too busy. Teri and her fa-
ther, Mario, had an argument over the
weekend. However, they made up by
Monday. Agnes wants to make a spe-
cial meal for her daughter Teri’s birth-
day.

Roy is the _____ of Agnes

Agnes:female,
Teri:female,
Mario:male,
Marianne:female,
Jean:female,
Darlene:female,
Roy:male

nephew

Robert’s aunt, Marianne, asked Robert
to mow the lawn for her. Robert
said he could n’t because he had a
bad back. William’s parents, Brian
and Marianne, threw him a surprise
party for his birthday. Brian’s daugh-
ter Jean made a mental note to be out
of town for her birthday! Agnes’s
biggest accomplishment is raising her
son Robert. Jean is looking for a good
gift for her sister Darlene.

Darlene is the _____ of Agnes

Agnes:female,
Robert:male,
Marianne:female,
William:male,
Brian:male,
Jean:female,
Darlene:female

niece

Sharon and her brother Mario went
shopping. Teri, Mario’s daughter,
came too. Agnes, Annie’s mother, is
unhappy with Robert. She feels her
son is cruel to Annie’s sister Teri, and
she wants Robert to be nicer. Robert’s
sister, Nicole, participated in the dance
contest.

Nicole is the _____ of Sharon

Sharon:female,
Mario:male,
Teri:female,
Annie:female,
Agnes:female,
Robert:male,
Nicole:female

niece
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et al., 2017], Relational Recurrent Networks (RMC) [Santoro et al., 2018] and Composi-

tional Memory Attention Network (MAC) [Hudson and Manning, 2018]. We also use

the large pre-trained language model, BERT [Devlin et al., 2019b], as well as a modi-

fied version of BERT having a trainable LSTM encoder on top of the pretrained BERT

embeddings. All of these models (except BERT) were re-implemented in PyTorch 1.0

[Paszke et al., 2017] and adapted to work with the CLUTRR benchmark.

Since the underlying relations in the stories generated by CLUTRR inherently form

a graph, we also experiment with a Graph Attention Network (GAT) [Veličković et al.,

2018]. Rather than taking the textual stories as input, the GAT baseline receives a struc-

tured graph representation of the facts that underlie the story.

Entity and query representations. We use the various baseline models to encode the

natural language story (or graph) into a fixed-dimensional embedding. With the ex-

ception of the BERT models, we do not use pre-trained word embeddings and learn

the word embeddings from scratch using end-to-end backpropagation. An important

note, however, is that we perform Cloze-style anonymization [Hermann et al., 2015]

of the entities (i.e., names) in the stories, where each entity name is replaced by a

@entity-k placeholder, which is randomly sampled from a small, fixed pool of place-

holder tokens. The embeddings for these placeholders are randomly initialized and

fixed during training.

To make a prediction about a target query given a story, we concatenate the em-

bedding of the story (generated by the baseline model) with the embeddings of the

two target entities and we feed this concatenated embedding to a 2-layer feed-forward

neural network with a softmax prediction layer.

3.4.1 Hyperparameters

For all models, the common hyperparameters used are: Embedding dimension: 100

(except BERT based models), Optimizer: Adam, Learning rate: 0.001, Number of
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epochs: 100, Number of runs: 10. Specific model-based hyperparameters are given

as follows:

• Bidirectional LSTM [Hochreiter and Schmidhuber, 1997, Cho et al., 2014]: LSTM

hidden dimension: 100, # layers: 2, Classifier MLP hidden dimension: 200

• Relation Networks [Santoro et al., 2017]: fθ1 : 256, fθ2 : 64, gθ : 64

• Compositional Memory Attention Network (MAC) [Hudson and Manning, 2018]:

# Iterations: 6, shareQuestion: True, Dropout - Memory, Read and Write: 0.2

• Relational Recurrent Networks [Santoro et al., 2018]: Memory slots: 2, Head

size: 192, Number of heads: 4, Number of blocks : 1, forget bias : 1, input bias: 0,

gate style: unit, key size: 64, # Attention layers: 3, Dropout: 0

• BERT [Devlin et al., 2019b]: Layers : 12, Fixed pretrained embeddings from

bert-base-uncased using Pytorch HuggingFace BERT repository 5, Word di-

mension: 768, appended with a two-layer MLP for final prediction.

• BERT-LSTM: Same parameters as above, with a two-layer unidirectional LSTM

encoder on top of BERT word embeddings.

• GAT [Veličković et al., 2018]: Node dimension: 100, Message dimension: 100,

Edge dimension: 20, number of rounds: 3

3.5 Results

We evaluate several NLU systems on the proposed CLUTRR benchmark to surface the

relative strengths and shortcomings of these models in the context of inductive reason-

ing and combinatorial generalization.6 We aim to answer the following key questions:
5https://github.com/huggingface/pytorch-pretrained-BERT
6Code to reproduce all the results in this section are available at

https://github.com/facebookresearch/clutrr/.

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/facebookresearch/clutrr/
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(Q1) How do state-of-the-art NLU models compare in terms of systematic generaliza-

tion? Can these models generalize to stories with unseen combinations of logical

rules?

(Q2) How does the performance of neural language understanding models compare

to a graph neural network that has full access to graph structure underlying the

stories?

(Q3) How robust are these models to the addition of noise facts to a given story?

3.5.1 Systematic Generalization

We begin by using CLUTRR to evaluate the ability of the baseline models to perform

systematic generalization (Q1). In this setting, we consider two training regimes: in

the first regime, we train all models with clauses of length k = 2,3, and in the second

regime, we train with clauses of length k = 2,3,4. We then test the generalization of

these models on test clauses of length k = 2, ...,10.

Figure 3.5 illustrates the performance of different models on this generalization

task. We observe that the GAT model is able to perform near-perfectly on the held-out

logical clauses of length k = 3, with the BERT-LSTM being the top-performer among

the text-based models but still significantly below the GAT. Not surprisingly, the per-

formance of all models degrades monotonically as we increase the length of the test

clauses, which highlights the challenge of “zero-shot” systematic generalization Lake

and Baroni [2018], Sodhani et al. [2018]. However, as expected, all models improve on

their generalization performance when trained on k = 2,3,4 rather than just k = 2,3

(Figure 3.5, right). The GAT, in particular, achieves the biggest gain by this expanded

training.
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Figure 3.5 Systematic generalization performance of different models
when trained on clauses of length k = 2,3 (Left) and k = 2,3,4 (Right).

3.5.2 The benefit of structure

The empirical results on systematic generalization also provide insight into how the

text-based NLU systems compare against the graph-based GAT model that has full ac-

cess to the logical graph structure underlying the stories (Q2). Indeed, the relatively

strong performance of the GAT model (Figure 3.5) suggests that the language-based

models fail to learn a robust mapping from the natural language narratives to the un-

derlying logical facts.

To further confirm this trend, we ran experiments with modified train and test splits

for the text-based models, where the same set of natural language paraphrases were

used to construct the narratives in both the train and test splits (Figure 3.6). In this

simplified setting, the text-based models must still learn to reason about held-out log-

ical patterns, but the difficulty of parsing the natural language is essentially removed,

as the same natural language paraphrases are used during testing and training. We

found that the text-based models were competitive with the GAT model in this sim-

plified setting, confirming that the poor performance of the text-based models on the

main task is driven by the difficulty of parsing the unseen natural language narratives.
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Figure 3.6 Systematic Generalizability of different models on
CLUTRR-Gen task (having 20% less placeholders and without train-
ing and testing placeholder split), when Left: trained with k = 2 and k = 3
and Right: trained with k = 2,3 and 4

Models Unstructured models (no graph) Structured model (with graph)

Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Clean Clean 0.58 ±0.05 0.53 ±0.05 0.49 ±0.06 0.63 ±0.08 0.37 ±0.06 0.67 ±0.03 1.0 ±0.0

Supporting 0.76 ±0.02 0.64 ±0.22 0.58 ±0.06 0.71 ±0.07 0.28 ±0.1 0.66 ±0.06 0.24 ±0.2

Irrelevant 0.7 ±0.15 0.76 ±0.02 0.59 ±0.06 0.69 ±0.05 0.24 ±0.08 0.55 ±0.03 0.51 ±0.15

Disconnected 0.49 ±0.05 0.45 ±0.05 0.5 ±0.06 0.59 ±0.05 0.24 ±0.08 0.5 ±0.06 0.8 ±0.17

Supporting Supporting 0.67 ±0.06 0.66 ±0.07 0.68 ±0.05 0.65 ±0.04 0.32 ±0.09 0.57 ±0.04 0.98 ±0.01

Irrelevant Irrelevant 0.51 ±0.06 0.52 ±0.06 0.5 ±0.04 0.56 ±0.04 0.25 ±0.06 0.53 ±0.06 0.93 ±0.01

Disconnected Disconnected 0.57 ±0.07 0.57 ±0.06 0.45 ±0.11 0.4 ±0.1 0.17 ±0.05 0.47 ±0.06 0.96 ±0.01

Average 0.61 ±0.08 0.59 ±0.08 0.54 ±0.07 0.61 ±0.06 0.30 ±0.07 0.56 ±0.05 0.77 ±0.09

Table 3.8 Testing the robustness of the various models when training and
testing on stories containing various types of noise facts. The types of noise
facts (supporting, irrelevant, and disconnected) are defined in Section .

3.5.3 Robust Reasoning

Finally, we use CLUTRR to systematically evaluate how various baseline neural lan-

guage understanding systems cope with noise (Q3). In all the experiments we provide

a combination of k = 2 and k = 3 length clauses in training and testing, with noise facts

being added to the train and/or test set depending on the setting (Table 3.8). We use

the different types of noise facts defined in Section 3.3.2..

Overall, we find that the GAT baseline outperforms the unstructured text-based
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models across most testing scenarios (Table 3.8), which showcases the benefit of a struc-

tured feature space for robust reasoning. When training on clean data and testing on

noisy data, we observe two interesting trends that highlight the benefits and shortcom-

ings of the various model classes:

1. All the text-based models excluding BERT actually perform better when testing on

examples that have supporting or irrelevant facts added. This suggests that these

models actually benefit from having more content related to the entities in the story.

Even though this content is not strictly useful or needed for the reasoning task, it

may provide some linguistic cues (e.g., about entity genders) that the models ex-

ploit. In contrast, the BERT-based models do not benefit from the inclusion of this

extra content, which is perhaps due to the fact that they are already built upon a

strong language model (e.g., that already adequately captures entity genders.)

2. The GAT model performs poorly when supporting facts are added but has no perfor-

mance drop when disconnected facts are added. This suggests that the GAT model

is sensitive to changes that introduce cycles in the underlying graph structure but is

robust to the addition of noise that is disconnected from the target entities.

Learning from noisy data

Moreover, when we trained on noisy examples, we found that only the GAT model was

able to consistently improve its performance (Table 3.8). We notice that the GAT model,

having access to the true underlying graph of the puzzles, perform better across differ-

ent testing scenarios when trained with the noisy data. As the Supporting facts contains

cycles, it is difficult for GAT to generalize for a dataset with cycles when it is trained

on a dataset without cycles. However, when trained with cycles, GAT learns to attend

to all the paths leading to the correct answer. This effect is disastrous when GAT is

tested on Irrelevant facts which contains dangling paths as GAT still tries to attend to

all the paths. Training on Irrelevant facts proved to be most beneficial to GAT, as the
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Models Unstructured models (no graph) Structured model (with graph)

Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Supporting Clean 0.38 ±0.04 0.32 ±0.04 0.4 ±0.09 0.45 ±0.03 0.19 ±0.06 0.39 ±0.06 0.92 ±0.17

Supporting 0.67 ±0.06 0.66 ±0.07 0.68 ±0.05 0.65 ±0.04 0.32 ±0.09 0.57 ±0.04 0.98 ±0.01

Irrelevant 0.44 ±0.03 0.39 ±0.03 0.51 ±0.08 0.46 ±0.09 0.2 ±0.06 0.36 ±0.05 0.5 ±0.23

Disconnected 0.31 ±0.21 0.25 ±0.16 0.47 ±0.08 0.41 ±0.06 0.2 ±0.08 0.32 ±0.04 0.92 ±0.05

Irrelevant Clean 0.57 ±0.05 0.56 ±0.05 0.46 ±0.13 0.67 ±0.05 0.24 ±0.06 0.46 ±0.08 0.92 ±0.0

Supporting 0.38 ±0.22 0.31 ±0.16 0.61 ±0.07 0.61 ±0.04 0.27 ±0.06 0.46 ±0.04 0.77 ±0.12

Irrelevant 0.51 ±0.06 0.52 ±0.06 0.5 ±0.04 0.56 ±0.04 0.25 ±0.06 0.53 ±0.06 0.93 ±0.01

Disconnected 0.44 ±0.26 0.54 ±0.27 0.55 ±0.05 0.61 ±0.06 0.26 ±0.03 0.45 ±0.08 0.85 ±0.25

Disconnected
Clean 0.45 ±0.02 0.47 ±0.03 0.53 ±0.09 0.5 ±0.06 0.22 ±0.09 0.44 ±0.05 0.75 ±0.07

Supporting 0.47 ±0.03 0.46 ±0.05 0.54 ±0.03 0.58 ±0.06 0.22 ±0.06 0.38 ±0.08 0.78 ±0.12

Irrelevant 0.47 ±0.05 0.48 ±0.03 0.52 ±0.04 0.51 ±0.05 0.17 ±0.04 0.38 ±0.05 0.56 ±0.26

Disconnected 0.57 ±0.07 0.57 ±0.06 0.45 ±0.11 0.4 ±0.1 0.17 ±0.05 0.47 ±0.06 0.96 ±0.01

Average 0.47 ±0.08 0.46 ±0.08 0.52 ±0.07 0.53 ±0.06 0.23 ±0.07 0.43 ±0.05 0.82 ±0.09

Table 3.9 Testing the robustness of the various models when trained vari-
ous types of noisy facts and evaluated on other noisy / clean facts.

model now perfectly attends to only relevant paths. Since Disconnected facts contains dis-

connected paths, the message passing function of the graph is unable to forward any

information from the disjoint cliques, thereby having superior testing scores through-

out several scenarios.

Again, these results highlights the performance gap between the unstructured text-

based models and GAT for solving the CLUTRR task.

Learning with synthetic placeholders

In order to further understand the effect of language placeholders on robustness, we

performed another set of experiments where we use bABI Weston et al. [2015] style

simple placeholders (Table 3.10). We observe a marked increase in performance of all

NLU models, where they significantly decrease the gap between their performance

with that of GAT, even outperforming GAT on various settings. This shows the signif-

icance of using paraphrased placeholders in devising the complexity of the dataset.
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Models Unstructured models (no graph) Structured model (with graph)

Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Supporting Clean 0.96 ±0.01 0.97 ±0.01 0.88 ±0.05 0.94 ±0.02 0.48 ±0.08 0.57 ±0.08 0.92 ±0.17

Supporting 0.96 ±0.03 0.96 ±0.03 0.97 ±0.01 0.97 ±0.01 0.75 ±0.07 0.88 ±0.05 0.98 ±0.01

Irrelevant 0.92 ±0.02 0.93 ±0.01 0.9 ±0.03 0.91 ±0.01 0.56 ±0.04 0.54 ±0.06 0.5 ±0.23

Disconnected 0.8 ±0.04 0.83 ±0.04 0.76 ±0.08 0.86 ±0.04 0.27 ±0.06 0.42 ±0.08 0.92 ±0.05

Irrelevant Clean 0.63 ±0.02 0.61 ±0.07 0.85 ±0.09 0.8 ±0.07 0.53 ±0.09 0.44 ±0.06 0.92 ±0.0

Supporting 0.66 ±0.03 0.64 ±0.04 0.69 ±0.06 0.76 ±0.06 0.42 ±0.08 0.43 ±0.08 0.77 ±0.12

Irrelevant 0.89 ±0.04 0.86 ±0.1 0.74 ±0.11 0.78 ±0.06 0.61 ±0.1 0.83 ±0.06 0.93 ±0.01

Disconnected 0.64 ±0.02 0.62 ±0.05 0.72 ±0.05 0.73 ±0.04 0.41 ±0.04 0.61 ±0.05 0.85 ±0.25

Disconnected
Clean 0.9 ±0.05 0.82 ±0.12 0.94 ±0.02 0.93 ±0.04 0.68 ±0.07 0.64 ±0.02 0.75 ±0.07

Supporting 0.87 ±0.04 0.82 ±0.05 0.85 ±0.03 0.88 ±0.04 0.54 ±0.08 0.5 ±0.05 0.78 ±0.12

Irrelevant 0.87 ±0.03 0.85 ±0.03 0.83 ±0.03 0.87 ±0.02 0.59 ±0.09 0.58 ±0.09 0.56 ±0.26

Disconnected 0.91 ±0.04 0.91 ±0.03 0.8 ±0.17 0.71 ±0.11 0.49 ±0.1 0.79 ±0.1 0.96 ±0.01

Average 0.83 ±0.08 0.82 ±0.08 0.83 ±0.07 0.84 ±0.06 0.58 ±0.07 0.60 ±0.05 0.82 ±0.09

Table 3.10 Testing the robustness on toy placeholders of the various mod-
els when trained various types of noisy facts and evaluated on other noisy
/ clean facts.

3.6 Related Work

To design the CLUTRR dataset, we draw inspiration from the classic work on inductive

logic programming (ILP), a long line of reading comprehension benchmarks in NLP,

as well as work combining language and knowledge graphs.

3.6.1 Reading comprehension benchmarks

Many datasets have been proposed to test the reading comprehension ability of NLP

systems. This includes the SQuAD [Rajpurkar et al., 2016], NewsQA [Trischler et al.,

2016], and MCTest [Richardson et al., 2013] benchmarks that focus on factual questions;

the SNLI [Bowman et al., 2015] and MultiNLI [Williams et al., 2018c] benchmarks for

sentence understanding; and the bABI tasks [Weston et al., 2015], to name a few. Our

primary contribution to this line of work is the development of a carefully designed

diagnostic benchmark to evaluate model robustness and systematic generalization in

the context of NLU.
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3.6.2 Systematic generalization

A growing body of literature has demonstrated that NLU models tend to exploit statis-

tical artifacts in datasets and lack true generalization capabilities [Jia and Liang, 2017,

Gururangan et al., 2018, Kaushik and Lipton, 2018, Lake and Baroni, 2018]. These crit-

ical examinations have dovetailed with similar studies on visual question answering

[Agrawal et al., 2016, Bahdanau et al., 2019, Johnson et al., 2017]. CLUTRR, contributes

to this growing area by introducing a principled and flexible benchmark to evaluate

systematic generalization in the context of language understanding—with our notion

of systematic generalization being grounded in classic work on inductive logic pro-

gramming (ILP) Quinlan [1990].

3.6.3 Question-answering with knowledge graphs

Our work is also related to the domain of question answering and reasoning in knowl-

edge graphs [Das et al., 2018, Xiong et al., 2018, Hamilton et al., 2018, Wang et al., 2018,

Xiong et al., 2017, Welbl et al., 2018, Kartsaklis et al., 2018], where either the model is

provided with a knowledge graph to perform inference over or where the model must

infer a knowledge graph from the text itself. However, unlike previous benchmarks in

this domain—which are generally transductive and focus on leveraging and extracting

knowledge graphs as a source of background knowledge about a fixed set of entities—

CLUTRR requires inductive logical reasoning, where every example requires reasoning

over a new set of previously unseen entities.

3.7 Discussion

In this paper we introduced the CLUTRR benchmark suite to test the systematic gener-

alization and inductive reasoning capabilities of NLU systems. We demonstrated the

diagnostic capabilities of CLUTRR and found that existing NLU systems exhibit rel-
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atively poor robustness and systematic generalization capabilities—especially when

compared to a graph neural network that works directly with symbolic input. Con-

cretely, using CLUTRR we were able to make the following key insights about the

reasoning capability of modern neural networks:

• Neural language models are unable to reason when tested with systematicity.

We saw in §3.5.1 that the performance of all NLU models drastically degrade

when we test on instances which require systematicity - the knowledge of com-

bination of existing parts - to solve the task. While all models had access to all

possible rules (by ingesting a combination of relations in the training data), all

models are notably worse when tested with longer chain of reasoning than the

ones trained upon. This shortcoming could be due to overly associating to certain

patterns seen during training, or learning to solve the task by taking shortcuts -

associating some combination of tokens for certain relations [Gururangan et al.,

2018].

• Models are not robust in their language understanding. When evaluated with

enabling (supporting) and distractor information (noise), we observe models to

display conflicting results. While supporting information is indeed useful for cer-

tain classes of models (§3.5.3), irrelevant and distracting information also seems

to aide in the reasoning process, which is not a systematic behaviour. Further-

more, when trained with noise, majority of the NLU models are unable to dis-

cern between the correct and the incorrect information. These results indicate a

potential surface form realization issue.

• The key hurdle behind systematic generalization is the natural language itself.

Finally, we observe overwhelmingly that when a model which is only provided

a graph, stripped of the natural language layer, the model is able to reason with

surprising ability. The graph model, GAT, does not have to extract the relevant



3 Understanding semantic generalization through systematicity 58

information from a given free-form text. This makes it easier for the model to

generalize more effectively, even in the scenarios when the model is tasked to

learn from distractor (noisy) information.

These results highlight the gap that remains between machine reasoning models

that work with unstructured text and models that are given access to more structured

input. It appears the key hindrance for a neural model for effective generalization and

reasoning is the access to proper surface forms. These results raises questions on the

syntax processing capabilities of NLU models, and call for more in-depth investigation

on the same. In fact, in the following chapters of this thesis, I will discuss my works

on further studying the notions of syntax encoding in NLU models using the tool of

systematicity.

3.8 Follow-up findings in the community

Our work inspired the community to explore the limits of reasoning capabilities in

Transformer models. Gontier et al. [2020] explore the limits of soft theorem-proving

using Transformers by leveraging the CLUTRR dataset. They observe similar length

generalization issues in theorem proving by generation, although they find Transform-

ers can improve their generalization performance when trained with longer, more ex-

haustive theorem proofs. Clark et al. [2020b] utilize the data generation pipeline of

CLUTRR to develop a mechanism to perform soft theorem-proving on explicitly pro-

vided synthetic rules (unlike our work, where we rely on implicit rules) expressed in

natural language following a question answering setup. Similar to our work, they

also find intrapolation and extrapolation issues of Transformer based models. However

in in-distribution setups the models are fairly robust in their reasoning capabilities,

leading Clark et al. [2020b] to conclude that Transformers are able to “learn to reason”.

Zhang et al. [2022a] attempt to clear this paradox by concluding that while Transform-
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ers show impressive in-distribution performance, the result is not sufficient to claim

the model has learned to reason. They observe that Transformers learn to memorize

and exploit statistical patterns rather than reasoning, thus further validating the results

of our work in this chapter.

Our work also inspired the development of datasets and benchmarks to explore

systematicity in language reasoning. Goodwin et al. [2020] develop a dataset grounded

in first order logic to inspect the systematicity of NLU models in the domain of natural

language inference, and find state-of-the-art NLU models do not generalize system-

atically despite projecting overall high performance. Minervini et al. [2020] develop

neuro-symbolic methods to solve the base version of the CLUTRR dataset, and observe

models having exposure to the symbolic rules offer much better results in systematic

generalization. Tian et al. [2021] also construct a diagnostic dataset in natural lan-

guage inference which is grounded in first order logic. They also discover weaknesses

of popular Transformer model variants on reasoning on natural logic, especially in

the similar flavor of generalization tests proposed in our work. Yanaka et al. [2021]

develop datasets to test whether Transformer models can parse sentences involving

novel combinations of logical expressions, such as quantifiers and negation. They find

that Transformers can only generalize to unseen combinations of quantifiers, negations

and modifiers in sentences having similar surface forms as in the training data, but not

to unseen surface forms. Their result further validates our conclusions that poor gen-

eralization often stems from limited encoding of the surface forms of text. Leveraging

the findings from our work, Tamari et al. [2022] develop a synthetic data generation

framework to repurpose the bAbI dataset [Weston et al., 2015], and find compositional

generalization is still a hard problem for Transformer models to solve. Fei et al. [2022]

develop a similar framework following our work to generate multi-hop questions that

contain key entities in multi-hop reasoning chains to ensure the complexity and quality

of the task.
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Chapter 4

Quantifying syntactic generalization

using word order

Of late, large scale pre-trained Transformer-based [Vaswani et al., 2017] models—such

as RoBERTa [Liu et al., 2019b], BART [Lewis et al., 2020b], and GPT-2 and -3 [Radford

et al., 2019b, Brown et al., 2020]—have exceeded recurrent neural networks’ perfor-

mance on many NLU tasks [Wang et al., 2018, 2019]. Several papers have even sug-

gested that Transformers pretrained on a language modeling (LM) objective can cap-

ture syntactic information [Hewitt and Manning, 2019, Jawahar et al., 2019a, Warstadt

and Bowman, 2020, Wu et al., 2020], with their self-attention layers being capable of

surprisingly effective learning Rogers et al. [2020]. In the preceeding chapter, we ob-

served that NLU models, including BERT, are unable to reason systematicity, primarily

due to their lack of understanding the surface forms of the given task. Thus, in this

chapter, we question the claim that state-of-the-art NLU models “know syntax”.

Since there are many ways to investigate “syntax”, we must be clear on what we

mean by the term. Knowing the syntax of a sentence means being sensitive to the or-

der of the words in that sentence (among other things). Humans are sensitive to word

order, so clearly, “language is not merely a bag of words” [Harris, 1954, p.156]. More-
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over, it is easier for us to identify or recall words presented in canonical orders than

in disordered, ungrammatical sentences; this phenomenon is called the “sentence supe-

riority effect” (Cattell 1886, Scheerer 1981, Toyota 2001, Baddeley et al. 2009, Snell and

Grainger 2017, 2019, Wen et al. 2019, i.a.). This effect also finds some neurobiological

support from work showing ordered text activates portions of the temporal lobe more

than unordered word lists [Bemis and Pylkkänen, 2013, Pylkkänen et al., 2014]. In our

estimation then, if one wants to claim that a model “knows syntax”, then they should

minimally show that the model is sensitive to word order (at least for e.g. English or

Mandarin Chinese).

Generally, knowing the syntax of a sentence is taken to be a prerequisite for un-

derstanding what that sentence means [Heim and Kratzer, 1998]. Models should have

to know the syntax first then, if performing any particular NLU task that genuinely

requires a humanlike understanding of meaning (cf. Bender and Koller 2020). Thus, if

our models are as good at NLU as our current evaluation methods suggest, we should

expect them to be sensitive to word order. In this chapter, I discuss our paper Sinha

et al. [2021b] where we use a suite of permutation metrics to find the models are not

sensitive to word order.

We focus here on textual entailment, one of the hallmark tasks used to measure how

well models understand language [Condoravdi et al., 2003, Giampiccolo et al., 2007a].

This task, often also called Natural Language Inference (NLI; Bowman et al. 2015, i.a.),

typically consists of two sentences: a premise and a hypothesis. The objective is to pre-

dict whether the premise entails the hypothesis, contradicts it, or is neutral with respect

to it. We find rampant word order insensitivity in purportedly high performing NLI

models. For nearly all premise-hypothesis pairs, there are many permuted examples

that fool the models into providing the correct prediction. In case of MNLI, for exam-

ple, the current state-of-the-art of 90.5% can be increased to 98.7% merely by permuting

the word order of test set examples. We even find drastically increased cross-dataset
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Premise Hypothesis Predicted
Label

Boats in daily use lie
within feet of the fash-
ionable bars and restau-
rants.

There are boats close
to bars and restau-
rants.

E

restaurants and use feet
of fashionable lie the in
Boats within bars daily .

bars restaurants are
There and to close
boats .

E

He and his associates
weren’t operating at the
level of metaphor.

He and his asso-
ciates were operat-
ing at the level of the
metaphor.

C

his at and metaphor the
of were He operating as-
sociates n’t level .

his the and
metaphor level
the were He at asso-
ciates operating of .

C

Table 4.1 Examples from the MNLI Matched development set. Both the
original example and the permuted one elicit the same classification label
(entailment and contradiction respectively) from RoBERTa (large). A simple
demo is provided in an associated Google Colab notebook.

generalization when we reorder words. This is not just a matter of chance—we show

that the model output probabilities are significantly different from uniform. A sample

of the model outputs with permuted examples is shown in Table 4.1.

We verify our findings with three popular English NLI datasets—SNLI [Bowman

et al., 2015], MultiNLI [Williams et al., 2018c] and ANLI [Nie et al., 2020])—and one

Chinese one, OCNLI Hu et al. [2020a]. It is thus less likely that our findings result from

some quirk of English or a particular tokenization strategy. We also observe the ef-

fect for various transformer architectures pre-trained on language modeling (RoBERTa

[Liu et al., 2019b], BART [Lewis et al., 2020b], DistilBERT [Sanh et al., 2020]), and non-

transformers, including a ConvNet [Zhao et al., 2015], an InferSent model [Conneau

https://colab.research.google.com/drive/1vv8Xmag1go3dib4vZXUZXAFB4ltDaMH7?usp=sharing
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et al., 2017], and a BiLSTM [Collobert and Weston, 2008].

Thus, in this chapter I discuss our contributions in Sinha et al. [2021b], which are as

follows: (i) we propose a suite of metrics (Permutation Acceptance) for measuring model

insensitivity to word order (§4.2), (ii) we construct multiple permuted test datasets

for measuring NLI model performance at a large scale (§4.4), (iii) we show that NLI

models focus on words more than word order, but can partially reconstruct syntactic

information from words alone (§4.5.1), (iv) we show the problem persists on out-of-

domain data, (v) we show that humans struggle with UnNatural Language Inference,

underscoring the non-humanlikeness of SOTA models (§4.5.2), (vi) finally, we explore

a simple maximum entropy-based method (§4.5.3) to encourage models not to accept

permuted examples.

4.1 Technical Background

In this chapter, we investigate the task of Natural Language Inference (NLI), also

known as Recognizing Textual Entailment (RTE). NLI task consists of inferring the

logical relation between two sentences, typically known as the premise and the hypoth-

esis. The logical relations that can exist between these two sentences can be on of three

types: entailment if the premise entails the hypothesis, contradiction if it is the opposite,

and neutral if the sentences have non overlapping meaning. Historically, this logical

relation formulation is derived from natural logic [MacCartney and Manning, 2007],

which consisted of seven set-theoretic relations between any given pair of sentences.

We use the formulation prescribed by Bowman et al. [2015], which is the simplified

formulation consisting of the three standard relations.

Linguists generally take syntactic structure to be necessary for humans to know

what sentences mean. Many also find the NLI task to a very promising approximation

of human natural language understanding, in part because it is rooted in the tradition
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of logical entailment. In the spirit of propositional logic, sentence meaning is taken

to be truth-conditional [Frege, 1948, Montague, 1970, Chierchia and McConnell-Ginet,

1990, Heim and Kratzer, 1998]. That is to say that understanding a sentence is equiv-

alent to knowing the actual conditions of the world under which the sentences would

be (judged) true [Wittgenstein, 1922]. If grammatical sentences are required for sen-

tential inference, as per a truth conditional approach [Montague, 1970], then permuted

sentences should be meaningless. Put another way, the meanings of highly permuted

sentences (if they exist) are not propositions, and thus those sentences don’t have truth

conditions. Only from their truth conditions of sentences can we tell if a sentence

entails another. In short, the textual entailment task is technically undefined in our

“unnatural” setting.

Since existing definitions don’t immediately extend to unnatural word orders, we

outline several hypothetical systematic ways that a model might perform, had it been

sensitive to word order. We hypothesize two models that operate on the first princi-

ples of NLI, and one that doesn’t. In the first case, Model A deems permuted sentences

meaningless (devoid of truth values), as formal semantic theories of human language

would predict. Thus, it assigns “neutral" to every permuted example. Next, Model

B does not deem permuted sentences meaningless, and attempts to understand them.

Humans find understanding permuted sentences difficult (see our human evaluations

in §4.5.2). Model B could also similarly struggle to decipher the meaning, and just

equally sample labels for each example (i.e., assigns equal probability mass to the out-

come of each label). Finally, we hypothesize a non-systematic model, Model C, which

attempts to treat permuted sentences as though they weren’t permuted at all. This

model could operate similarly as bag-of-words (BOW), and thus always assign the

same label to the permuted examples as it would to the un-permuted examples. If the

model failed to assign the original gold label to the original unpermuted examples, it

will also fail to assign the original gold label to its permutations; it will never get higher
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accuracy on permuted examples than on unpermuted ones.

We find in our experiments that the state-of-the-art Transformer-based NLI models

(as well as pre-Transformer class of models) do not perform like any of the above hypo-

thetical models. They perform closest to Model C, but are, in some cases, actually able

to achieve higher accuracy on permuted examples. To better quantitatively describe

this behaviour, we introduce our suite of Permutation Acceptance metrics that enable

us to quantify how accepting models are of permuted sentences.

4.2 Experimental Setup

4.2.1 Constructing the permuted dataset.

For a given dataset D having splits Dtrain and Dtest, we first train an NLI model M on

Dtrain to achieve comparable accuracy to what was reported in the original papers. We

then construct a randomized version of Dtest, which we term as D̂test such that: for each

example (pi, hi, yi) ∈Dtest (where pi and hi are the premise and hypothesis sentences of

the example respectively and yi is the gold label), we use a permutation operatorF that

returns a list (P̂i, Ĥi) of q permuted sentences (p̂i and ĥi), where q is a hyperparameter.

F essentially permutes all positions of the words in a given sentence (i.e., either in

premise or hypothesis) with the restriction that no words maintain their original position.

In our initial setting, we do not explicitly control the placement of the words relative to

their original neighbors, but we analyze clumping effects in §4.4. D̂test now consists of

|Dtest|×q examples, with q different permutations of hypothesis and premise for each

original test example pair. If a sentence S (e.g., hi) contains w words, then the total

number of available permutations of S are (w− 1)!, thus making the output of F a list

of
(
(w−1)!

q

)
permutations in this case. For us, the space of possible outputs is larger, since

we permute pi and hi separately (and ignore examples for which any |S|≤ 5).
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Figure 4.1 Graphical representation of the Permutation Acceptance class
of metrics. Given a sample test set Dtest with six examples, three of which
originally predicted correctly (model predicts gold label), three incorrectly
(model fails to predict gold label), with n= 6 permutations, Ωmax,Ωrand, Ω1.0,
Pc and Pf are provided. Green boxes indicate permutations accepted by
the model. Blue boxes mark examples that crossed each threshold and were
used to compute the corresponding metric.

4.2.2 Defining Permutation Acceptance.

The choice of q naturally allows us to analyze a statistical view of the predictability of

a model on the permuted sentences. To that end, we define the following notational

conventions. Let A be the original accuracy of a given model M on a dataset D, and c

be the number of examples in a dataset which are marked as correct according to the

standard formulation of accuracy for the original dataset (i.e., they are assigned the

ground truth label). Typically A is given by c
|Dtest| or c

|Ddev |
.

Let PrM(P̂i, Ĥi)cor then be the percentage of q permutations of an example (pi, hi)

assigned the ground truth label yi by M :

Pr
M
(P̂i, Ĥi)cor =

1

q

∑
(p̂j∈P̂i,ĥj∈Ĥi)

((M(p̂j, ĥj) = yi)→ 1) (4.1)

To get an overall summary score, we let Ωx be the percentage of examples (pi, hi) ∈

Dtest for which PrM(P̂i, Ĥi)cor exceeds a predetermined threshold 0 < x < 1. Concretely,
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a given example will count as correct according to Ωx if more than x percent of its

permutations (P̂i and Ĥi) are assigned yi by the model M . Mathematically,

Ωx =
1

| Dtest |
∑

(pi,hi)∈Dtest

((Pr
M
(P̂i, Ĥi)cor > x)→ 1). (4.2)

There are two specific cases of Ωx that we are most interested in. First, we define Ωmax

or the Maximum Accuracy, where x = 1/|Dtest|. In short, Ωmax gives the percentage of

examples (pi, hi) ∈ Dtest for which there is at least one permutation (p̂j, ĥj) that model

M assigns the gold label yi 1. Second, we define Ωrand, or Random Baseline Accuracy,

where x = 1/m or chance probability (for balanced m-way classification, where m = 3

in NLI). This metric is less stringent than Ωmax, as it counts an example if at least one

third of its permutations are assigned the gold label (hence provides a lower-bound

relaxation). See Figure 4.1 for a graphical representation of Ωx.

We also define Df to be the list of examples originally marked incorrect according

to A, but are now deemed correct according Ωmax. Dc is the list of examples originally

marked correct according to A. Thus, we should expect Df < Dc for models that have

high accuracy. Additionally, we define Pc and Pf , as the dataset average percentage

of permutations which predicted the gold label, when the examples were originally

correct (Dc) and when the examples were originally incorrect (Df ) as per A (hence,

flipped) respectively.

Pc =
1

|Dc|

|Dc|∑
i=0

M(P̂i, Ĥi)cor (4.3)

P f is defined similarly by replacing Dc by Df . Note that for a classic BOW model,

Pc = 100 and Pf = 0, because it would rely on the words alone (not their order) to

make its classification decision. Since permuting removes no words, BOW models

1Theoretically, Ωmax → 1 if the number of permutations q is large. Thus, in our experiments we set
q = 100.
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should come to the same decisions for permuted examples as for the originals.

4.3 Evaluated Models

We run our experiments on two types of models: (a) Transformer-based models and (b)

Non-Transformer Models. In (a), we investigate the state-of-the-art pre-trained models

such as RoBERTa-Large Liu et al. [2019b], BART-Large Lewis et al. [2020b] and Distil-

BERT Sanh et al. [2020]. For (b) we consider several recurrent and convolution based

neural networks, such as InferSent Conneau et al. [2017], Bidirectional LSTM Collobert

and Weston [2008] and ConvNet Zhao et al. [2015]. We train all models on MNLI, and

evaluate on in-distribution (SNLI and MNLI) and out-of-distribution datasets (ANLI).

We independently verify results of (a) using both our fine-tuned model using Hug-

gingFace Transformers Wolf et al. [2020a] and pre-trained checkpoints from FairSeq

Ott et al. [2019] (using PyTorch Model Hub). For (b), we use the InferSent codebase.

We sample q = 100 permutations for each example in Dtest, and use 100 seeds for each

of those permutations to ensure full reproducibility. We drop examples from test sets

where we are unable to compute all unique randomizations, typically these are exam-

ples with sentences of length of less than 6 tokens. 2

4.4 Results

4.4.1 Models accept many permuted examples.

We find Ωmax is very high for models trained and evaluated on MNLI (in-domain gen-

eralization), reaching 98.7% on MNLI dev. and test sets (in RoBERTa, compared toA of

90.6% (Table 4.2). Recall, human accuracy is approximately 92% on MNLI dev., Nan-

gia and Bowman 2019). This shows that there exists at least one permutation (usually

2Code, data, and model checkpoints are available at https://github.com/facebookresearch/unlu.

https://github.com/facebookresearch/unlu
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Figure 4.2 Comparison of Ωmax,Ωrand,Pc and Pf with the model accuracy
A on multiple datasets, where all models are trained on the MNLI corpus
Williams et al. [2018c].

many more) for almost all examples in Dtest such that model M predicts the gold label.

We also observe high Ωrand at 79.4%, showing that there are many examples for which

the models outperform even a random baseline in accepting permuted sentences. We

provide an example of the behaviour in Table 4.1.

Evaluating out-of-domain generalization with ANLI dataset splits resulted in an

Ωmax value that is notably higher than A (89.7% Ωmax for RoBERTa compared to 45.6%

A). As a consequence, we encounter many flips, i.e., examples where the model is

unable to predict the gold label, but at least one permutation of that example is able

to. However, recall this analysis expects us to know the gold label upfront, so this

test can be thought of as running a word-order probe test on the model until the model

predicts the gold label (or give up by exhausting our set of q permutations). For out-of-
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domain generalization, Ωrand decreases considerably (36.4% Ωrand on A1), which means

fewer permutations are accepted by the model. Next, recall that a classic bag-of-words

model would have Pc = 100 and Pf = 0. No model performs strictly like a classic

bag of words although they do perform somewhat BOW-like (Pc >> Pf for all test

splits, Figure 4.2). We find this BOW-likeness to be higher for certain non-Transformer

models, (InferSent) as they exhibit higher Pc (84.2% for InferSent compared to 70.7%

for RoBERTa on MNLI).

Investigating other Ω values

Figure 4.3 Ωx threshold for all datasets with varying x and computing the
percentage of examples that fall within the threshold. The top row consists
of in-distribution datasets (MNLI, SNLI) and the bottom row contains out-
of-distribution datasets (ANLI)

We defined two variations of Ωx, Ωmax and Ωrand, but theoretically it is possible to

define any arbitrary threshold percentage x to evaluate the unnatural language infer-

ence mechanisms of different models. In Figure 4.3 we show the effect of different
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Model Eval. Dataset A Ωmax Pc Pf Ωrand

RoBERTa-Large

MNLI_m_dev 0.906 0.987 0.707 0.383 0.794
MNLI_mm_dev 0.901 0.987 0.707 0.387 0.790
SNLI_dev 0.879 0.988 0.768 0.393 0.826
SNLI_test 0.883 0.988 0.760 0.407 0.828
A1* 0.456 0.897 0.392 0.286 0.364
A2* 0.271 0.889 0.465 0.292 0.359
A3* 0.268 0.902 0.480 0.308 0.397

Mean 0.652 0.948 0.611 0.351 0.623

BART-Large

MNLI_m_dev 0.902 0.989 0.689 0.393 0.784
MNLI_mm_dev 0.900 0.986 0.695 0.399 0.788
SNLI_dev 0.886 0.991 0.762 0.363 0.834
SNLI_test 0.888 0.990 0.762 0.370 0.836
A1* 0.455 0.894 0.379 0.295 0.374
A2* 0.316 0.887 0.428 0.303 0.397
A3* 0.327 0.931 0.428 0.333 0.424

Mean 0.668 0.953 0.592 0.351 0.634

DistilBERT

MNLI_m_dev 0.800 0.968 0.775 0.343 0.779
MNLI_mm_dev 0.811 0.968 0.775 0.346 0.786
SNLI_dev 0.732 0.956 0.767 0.307 0.731
SNLI_test 0.738 0.950 0.770 0.312 0.725
A1* 0.251 0.750 0.511 0.267 0.300
A2* 0.300 0.760 0.619 0.265 0.343
A3* 0.312 0.830 0.559 0.259 0.363

Mean 0.564 0.883 0.682 0.300 0.575

InferSent

MNLI_m_dev 0.658 0.904 0.842 0.359 0.712
MNLI_mm_dev 0.669 0.905 0.844 0.368 0.723
SNLI_dev 0.556 0.820 0.821 0.323 0.587
SNLI_test 0.560 0.826 0.824 0.321 0.600
A1* 0.316 0.669 0.425 0.395 0.313
A2* 0.310 0.662 0.689 0.249 0.330
A3* 0.300 0.677 0.675 0.236 0.332

Mean 0.481 0.780 0.731 0.322 0.514

ConvNet

MNLI_m_dev 0.631 0.926 0.773 0.340 0.684
MNLI_mm_dev 0.640 0.926 0.782 0.343 0.694
SNLI_dev 0.506 0.819 0.813 0.339 0.597
SNLI_test 0.501 0.821 0.809 0.341 0.596
A1* 0.271 0.708 0.648 0.218 0.316
A2* 0.307 0.725 0.703 0.224 0.356
A3* 0.306 0.798 0.688 0.234 0.388

Mean 0.452 0.817 0.745 0.291 0.519

BiLSTM

MNLI_m_dev 0.662 0.925 0.800 0.351 0.711
MNLI_mm_dev 0.681 0.924 0.809 0.344 0.724
SNLI_dev 0.547 0.860 0.762 0.351 0.598
SNLI_test 0.552 0.862 0.771 0.363 0.607
A1* 0.262 0.671 0.648 0.271 0.340
A2* 0.297 0.728 0.672 0.209 0.328
A3* 0.304 0.731 0.656 0.219 0.331

Mean 0.472 0.814 0.731 0.301 0.520

Table 4.2 Statistics for Transformer-based models trained on MNLI cor-
pus Williams et al. [2018c]. The highest values are bolded (red indicates
the model most insensitive to permutation) per metric and per model class
(Transformers and non-Transformers). A1*, A2* and A3* refer to the ANLI
dev. sets [Nie et al., 2020].
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Figure 4.4 Average entropy of model confidences on permutations that
yielded the correct results for Transformer-based models (top) and Non-
Transformer-based models (bottom). Results are shown for Dc (orange) and
Df (blue). The boxes show the quartiles of the entropy distributions.

thresholds, including Ωmax where x = 1/|Dtest| and Ωrand where x = 0.34. We observe

for in-distribution datasets (top row, MNLI and SNLI splits), in the extreme setting

when x = 1.0, there are more than 10% of examples available, and more than 25% in

case of InferSent and DistilBERT. For out-of-distribution datasets (bottom row, ANLI

splits) we observe a much lower trend, suggesting generalization itself is the bottleneck

in permuted sentence understanding.

4.4.2 Models are very confident.

The phenomenon we observe would be of less concern if the correct label prediction

was just an outcome of chance, which could occur when the entropy of the log prob-

abilities of the model output is high (suggesting uniform probabilities on entailment,

neutral and contradiction labels, recall Model B from §4.1). We first investigate the
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model probabilities for the Transformer-based models on the permutations that lead

to the correct answer in Figure 4.4. We find overwhelming evidence that model con-

fidences on in-distribution datasets (MNLI, SNLI) are highly skewed, resulting in low

entropy, and it varies among different model types. BART proves to be the most

skewed Transformer-based model. This skewness is not a property of model capac-

ity, as we observe DistilBERT log probabilities to have similar skewness as RoBERTa

(large) model, while exhibiting lower A, Ωmax, and Ωrand.

For non-Transformers whose accuracy A is lower, the Ωmax achieved by these mod-

els are also predictably lower. We observe roughly the same relative performance in

the terms of Ωmax (Figure 4.2 and Table 4.2) and Average entropy (Figure 4.4). However,

while comparing the averaged entropy of the model predictions, it is clear that there

is some benefit to being a worse model—non-Transformer models are not as overcon-

fident on randomized sentences as Transformers are. High confidence of Transformer

models can be attributed to the overthinking phenomenon commonly observed in deep

neural networks Kaya et al. [2019] and BERT-based models Zhou et al. [2020].

4.4.3 Similar artifacts in Chinese NLU.

Model A Ωmax Pc Pf Ωrand

RoBERTa-Large 0.784 0.988 0.726 0.339 0.773
InferSent 0.573 0.931 0.771 0.265 0.615
ConvNet 0.407 0.752 0.808 0.199 0.426
BiLSTM 0.566 0.963 0.701 0.271 0.611

Table 4.3 Results on evaluation on OCNLI Dev set. All models are trained
on OCNLI corpus Hu et al. [2020a]. Bold marks the highest value per metric
(red shows the model is insensitive to permutation).

We extended the experiments to the Original Chinese NLI dataset [Hu et al., 2020a,

OCNLI], and re-used the pre-trained RoBERTa-Large and InferSent (non-Transformer)
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models on OCNLI. Our findings are similar to the English results (Table 4.3), thereby

suggesting that the phenomenon is not just an artifact of English text or tokenization.

4.4.4 Other Results.

We investigated the effect of sentence length (which correlates with number of pos-

sible permutations), and hypothesis-only randomization (models exhibit similar phe-

nomenon even when only hypothesis is permuted). In terms of sentence length, we

observe that shorter sentences in general have a somewhat higher probability of accep-

tance for examples which was originally predicted correctly—since shorter sentences

have fewer unique permutations (Figure 4.5). However, for the examples which were

originally incorrect, the trend is not present.

Figure 4.5 Length and Permutation Acceptanceby Transformer-based
models.

In recent years, the impact of the hypothesis sentence [Gururangan et al., 2018,

Tsuchiya, 2018, Poliak et al., 2018] on NLI classification has been a topic of much inter-

est. As we define in §4.1, logical entailment can only be defined for pairs of proposi-

tions. We investigated one effect where we randomize only the hypothesis sentences

while keeping the premise intact. Figure 4.6 and Figure 4.7 shows that the Ωmax value

is almost the same for the two schemes; randomizing the hypothesis alone also leads

the model to accept many permutations.
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Figure 4.6 Comparing the effect between randomizing both premise
and hypothesis and only hypothesis on two Transformer-based models,
RoBERTa and BART. Here, we observe the difference of Ωmax is marginal
in in-distribution datasets (SNLI, MNLI), while hypothesis-only random-
ization is worse for out-of-distribution datasets (ANLI).

4.5 Analysis

4.5.1 Analyzing Syntactic Structure Associated with Tokens

A natural question to ask following our findings: what is it about particular permu-

tations that leads models to accept them? Since the permutation operation is drastic

and only rarely preserves local word relations, we first investigate whether there exists

a relationship between Permutation Acceptance scores and local word order preser-

vation. Concretely, we compare bi-gram word overlap (BLEU-2) with the percent-

age of permutations that are deemed correct (Figure 4.8).3 Although the probability

of a permuted sentence to be predicted correctly does appear to track BLEU-2 score

(Figure 4.8), the percentage of examples which were assigned the gold label by the

Transformer-based models is still higher than we would expect from permutations

3We observe, due to our permutation process, the maximum BLEU-3 and BLEU-4 scores are negligi-
bly low (< 0.2 BLEU-3 and < 0.1 BLEU-4), already calling into question the hypothesis that n-grams are
the sole explanation for our finding. Because of this, we only compare BLEU-2 scores.
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Figure 4.7 Comparing the effect between randomizing both premise
and hypothesis and only hypothesis on two Transformer-based models,
RoBERTa and BART. In this figure, we compare the mean number of permu-
tations which elicited correct response, and naturally the hypothesis-only
randomization causes more percentage of randomizations to be correct.

with lower BLEU-2 (66% for the lowest BLEU-2 range of 0 − 0.15), suggesting pre-

served relative word order alone cannot explain the high permutation acceptance rates.

Thus, we find that local order preservation does correlate with Permutation Accep-

tance, but it doesn’t fully explain the high Permutation Acceptance scores. We now

further ask whether Ω is related to a more abstract measure of local word relations, i.e.,

part-of-speech (POS) neighborhood.

Many syntactic formalisms, like Lexical Functional Grammar [Kaplan and Bresnan,

1995, Bresnan et al., 2015, LFG], Head-drive Phrase Structure Grammar [Pollard and

Sag, 1994, HPSG] or Lexicalized Tree Adjoining Grammar [Schabes et al., 1988, Abeille,

1990, LTAG], are “lexicalized”, i.e., individual words or morphemes bear syntactic fea-

tures telling us which other words they can combine with. For example, “buy” could

be associated with (at least) two lexicalized syntactic structures, one containing two

noun phrases (as in Kim bought cheese), and another with three (as in Lee bought Logan

cheese). We speculate that our NLI models might accept permuted examples at high
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Figure 4.8 BLEU-2 score versus acceptability of permuted sentences across
all test datasets. RoBERTa and BART performance is similar but differs con-
siderably from the performance of non-Transformer-based models, such as
InferSent and ConvNet.

rates, because they are (perhaps noisily) reconstructing the original sentence from ab-

stract, word-anchored information about common neighbors.

To test this, we POS-tagged Dtrain using 17 Universal Part-of-Speech tags (using

spaCy, Honnibal et al. 2020). For each wi ∈ Si, we compute the occurrence probability

of POS tags on tokens in the neighborhood of wi. The neighborhood is specified by the

radius r (a symmetrical window r tokens from wi ∈ Si to the left and right). We denote

this sentence level probability of neighbor POS tags for a word wi as ψr
{wi,Si} ∈ R

17.

Sentence-level word POS neighbor scores can be averaged across Dtrain to get a type

level score ψr
{wi,Dtrain} ∈ R

17,∀wi ∈ Dtrain. Then, for a sentence Si ∈ Dtest, for each word

wi ∈ Si, we compute a POS mini-tree overlap score:

βk
{wi,Si} =

1

k
| argmaxkψ

r
{wi,Dtrain}∩

argmaxkψ
r
{wi,Si} |

(4.4)

Concretely, βk
{wi,Si} computes the overlap of top-k POS tags in the neighborhood of

a wordwi in S with that of the train statistic. If a word has the same mini-tree in a given
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sentence as it has in the training set, then the overlap would be 1. For a given sentence

Si, the aggregate βk
{Si} is defined by the average of the overlap scores of all its words:

βk
{Si} =

1
|Si|

∑
wi∈Si

βk
{wi,Si}, and we call it a POS minitree signature. We can also compute

the POS minitree signature of a permuted sentence Ŝi to have βk
{Ŝi}

. If the permuted

sentence POS signature comes close to that of the true sentence, then their ratio (i.e.,

βk
{Ŝi}

/βk
{Si}) will be close to 1. Also, since POS signature is computed with respect to

the train distribution, a ratio of > 1 indicates that the permuted sentence is closer to

the overall train statistic than to the original unpermuted sentence in terms of POS

signature. If high overlap with the training distribution correlates with percentage of

permutations deemed correct, then our models treat words as if they project syntactic

minitrees. Figure 4.9 provides a snapshot a word “river" from the test set and shows

how the POS signature distribution of the word in a particular example match with that

of aggregated training statistic. In practice, we select the top k POS tags for the word in

the test signature as well as the train, and calculate their overlap. When comparing the

model performance with permuted sentences, we compute a ratio between the original

test overlap score and an overlap score calculated instead from the permuted test. In

the Figure 4.9, ‘river’ would have a POS tag minitree score of 0.75.

We investigate the relationship with percentage of permuted sentences accepted

with βk
{Ŝi}

/βk
{Si} in Figure 4.10. We observe that the POS Tag Minitree hypothesis holds

for Transformer-based models, RoBERTa, BART and DistilBERT, where the percentage

of accepted pairs increase as the sentences have higher overlap with the un-permuted

sentence in terms of POS signature. For non-Transformer models such as InferSent,

ConvNet, and BiLSTM models, the POS signature ratio to percentage of correct permu-

tation remains the same or decreases, suggesting that the reasoning process employed

by these models does not preserve local abstract syntax structure (i.e., POS neighbor

relations).
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Figure 4.9 Example POS signature for the word ‘river’, calculated with
a radius of 2. Probability of each neighbor POS tag is provided. Orange
examples come from the permuted test set, and blue come from the original
training data.

4.5.2 Human Evaluation

We expect humans to struggle with UNLI, given our intuitions and the sentence supe-

riority findings (but see Mollica et al. 2020). To test this, we presented two experts in

NLI (one a linguist) with permuted sentence pairs to label.4 Concretely, we draw equal

number of examples from MNLI Matched dev set (100 examples where RoBERTa pre-

dicts the gold label, Dc and 100 examples where it fails to do so, Df ), and then permute

these examples using F . The experts were given no additional information (recall that

it is common knowledge that NLI is a roughly balanced 3-way classification task). Un-

beknownst to the experts, all permuted sentences in the sample were actually accepted

4Concurrent work by Gupta et al. [2021] found that untrained crowdworkers accept NLI examples
that have been subjected to different kinds of perturbations at roughly most frequent class levels—i.e.,
only 35% of the time.
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Figure 4.10 POS Tag Mini Tree overlap score and percentage of permuta-
tions which the models assigned the gold-label.

Evaluator Accuracy Macro F1 Acc on Dc Acc on Df

X 0.581 ±0.068 0.454 0.649 ±0.102 0.515 ±0.089
Y 0.378 ±0.064 0.378 0.411 ±0.098 0.349 ±0.087

Table 4.4 Human (expert) evaluation on 200 permuted examples from the
MNLI matched development set. Half of the permuted pairs contained
shorter sentences and the other, longer ones. All permuted examples were
assigned the gold label by RoBERTa-Large.

by the RoBERTa (large) model (trained on MNLI dataset). We observe that the experts

performed much worse than RoBERTa (Table 4.4), although their accuracy was a bit

higher than random. We also find that for both experts, accuracy on permutations

from Dc was higher than on Df , which verifies findings that showed high word over-

lap can give hints about the ground truth label [Dasgupta et al., 2018, Poliak et al., 2018,

Gururangan et al., 2018, Naik et al., 2019].
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4.5.3 Training by Maximizing Entropy

We propose an initial attempt to mitigate the effect of correct prediction on permuted

examples. As we observe in §4.4.2, model entropy on permuted examples is signifi-

cantly lower than expected. Neural networks tend to output higher confidence than

random for even unknown inputs Gandhi and Lake [2020], which might be an under-

lying cause of the high Permutation Acceptance.

An ideal model would be ambivalent about randomized ungrammatical sentences.

Thus, we train NLI models baking in the principle of mutual exclusivity [Gandhi and

Lake, 2020] by maximizing model entropy. Concretely, we fine-tune RoBERTa on MNLI

while maximizing the entropy (H) on a subset of n randomized examples ((p̂i, r̂i), for

each example (p,h) in MNLI. We modify the loss function as follows:

(4.5)L = argmin
θ

∑
((p,h),y)

y log(p(y|(p,h); θ)) +
n∑

i=1

H
(
y|(p̂i, ĥi); θ

)
Using this maximum entropy method (n = 1), we find that the model improves con-

siderably with respect to its robustness to randomized sentences, all while taking no

hit to accuracy (Table 4.5). We observe that no model reaches a Ωmax score close to 0,

suggesting further room to explore other methods for decreasing models’ Permutation

Acceptance. Similar approaches have also proven useful [Gupta et al., 2021] for other

tasks as well.

4.6 Related Work

Researchers in NLP have realized the importance of syntactic structure in neural net-

works going back to Tabor [1994]. An early hand annotation effort on PASCAL RTE

[Dagan et al., 2006] suggested that “syntactic information alone was sufficient to make

a judgment” for roughly one third of examples [Vanderwende and Dolan, 2005]. Anec-

dotally, large generative language models like GPT-2 or -3 exhibit a seemingly hu-
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Eval Dataset A (V) A (ME) Ωmax (V) Ωmax (ME)

MNLI_m_dev 0.905 0.908 0.984 0.328
MNLI_mm_dev 0.901 0.903 0.985 0.329
SNLI_test 0.882 0.888 0.983 0.329
SNLI_dev 0.879 0.887 0.984 0.333
ANLI_r1_dev 0.456 0.470 0.890 0.333
ANLI_r2_dev 0.271 0.258 0.880 0.333
ANLI_r3_dev 0.268 0.243 0.892 0.334

Table 4.5 NLI Accuracy (A) and Permutation Acceptance metrics (Ωmax)
of RoBERTa when trained on MNLI dataset using vanilla (V) and Maximum
Random Entropy (ME) method.

manlike ability to generate fluent and grammatical text [Goldberg, 2019, Wolf, 2019b].

However, the jury is still out as to whether transformers genuinely acquire syntax.

4.6.1 Models appear to have acquired syntax.

When researchers have peeked inside Transformer LM’s pretrained representations,

familiar syntactic structure [Hewitt and Manning, 2019, Jawahar et al., 2019a, Lin et al.,

2019, Warstadt and Bowman, 2020, Wu et al., 2020], or a familiar order of linguistic

operations [Jawahar et al., 2019a, Tenney et al., 2019], has appeared. There is also evi-

dence, notably from agreement attraction phenomena [Linzen et al., 2016] that transformer-

based models pretrained on LM do acquire some knowledge of natural language syn-

tax [Gulordava et al., 2018a, Chrupała and Alishahi, 2019, Jawahar et al., 2019a, Lin

et al., 2019, Manning et al., 2020, Hawkins et al., 2020, Linzen and Baroni, 2021]. Results

from other phenomena [Warstadt and Bowman, 2020] such as NPI licensing [Warstadt

et al., 2019a] lend additional support. The claim that LMs acquire some syntactic

knowledge has been made not only for transformers, but also for convolutional neural

nets [Bernardy and Lappin, 2017], and RNNs [Gulordava et al., 2018a, van Schijndel
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and Linzen, 2018, Wilcox et al., 2018, Zhang and Bowman, 2018, Prasad et al., 2019,

Ravfogel et al., 2019]—although there are many caveats (e.g., Ravfogel et al. 2018,

White et al. 2018, Davis and van Schijndel 2020, Chaves 2020, Da Costa and Chaves

2020, Kodner and Gupta 2020).

4.6.2 Models appear to struggle with syntax.

Several works have cast doubt on the extent to which NLI models in particular know

syntax (although each work adopts a slightly different idea of what “knowing syntax”

entails). For example, McCoy et al. [2019b] argued that the knowledge acquired by

models trained on NLI (for at least some popular datasets) is actually not as syntac-

tically sophisticated as it might have initially seemed; some transformer models rely

mainly on simpler, non-humanlike heuristics. In general, transformer LM performance

has been found to be patchy and variable across linguistic phenomena [Dasgupta et al.,

2018, Naik et al., 2018, An et al., 2019, Ravichander et al., 2019, Jeretic et al., 2020]. This

is especially true for syntactic phenomena [Marvin and Linzen, 2018, Hu et al., 2020b,

Gauthier et al., 2020, McCoy et al., 2020, Warstadt et al., 2020b], where transformers are,

for some phenomena and settings, worse than RNNs [van Schijndel et al., 2019]. From

another angle, many have explored architectural approaches for increasing a network’s

sensitivity to syntactic structure [Chen et al., 2017, Li et al., 2020]. Williams et al. [2018a]

showed that learning jointly to perform NLI and to parse resulted in parse trees that

match no popular syntactic formalisms. Furthermore, models trained explicitly to dif-

ferentiate acceptable sentences from unacceptable ones (i.e., one of the most common

syntactic tests used by linguists) have, to date, come nowhere near human performance

[Warstadt et al., 2019c].
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4.6.3 Insensitivity to Perturbation.

Most relatedly, several concurrent works [Pham et al., 2020, Alleman et al., 2021, Gupta

et al., 2021, Sinha et al., 2021a, Parthasarathi et al., 2021] investigated the effect of word

order permutations on transformer NNs. Pham et al. [2020] is very nearly a proper

subset of our work except for investigating additional tasks (i.e. from the GLUE bench-

mark of Wang et al. 2018) and performing a by-layer-analysis. Gupta et al. [2021] also

relies on the GLUE benchmark, but additionally investigates other types of “destruc-

tive” perturbations. Our contribution differs from these works in that we additionally

include the following: we (i) outline theoretically-informed predictions for how mod-

els should be expected to react to permuted input (we outline a few options), (ii) show

that permuting can “flip” an incorrect prediction to a correct one, (iii) show that the

problem isn’t specific to Transformers, (iv) show that the problem persists on out of

domain data, (v) offer a suite of flexible metrics, and (vi) analyze why models might

be accepting permutations (BLEU and POS-tag neighborhood analysis). Finally, we

replicate our findings in another language. While our work (and Pham et al., Gupta

et al.) only permutes data during fine-tuning and/or evaluation, recently Sinha et al.

explored the sensitivity during pre-training, and found that models trained on n-gram

permuted sentences perform remarkably close to regular MLM pre-training. In the

context of generation, Parthasarathi et al. [2021] crafted linguistically relevant pertur-

bations (on the basis of part-of-speech tagging and dependency parsing) to evaluate

whether permutation hinders automatic machine translation models. Relatedly, but

not for translation, Alleman et al. [2021] investigated a smaller inventory of perturba-

tions with emphasis on phrasal boundaries and the effects of n-gram perturbations on

different layers in the network.
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4.6.4 NLI Models are very sensitive to words.

NLI models often over-attend to particular words to predict the correct answer [Guru-

rangan et al., 2018, Clark et al., 2019b]. Wallace et al. [2019] show that some short se-

quences of non-human-readable text can fool many NLU models, including NLI mod-

els trained on SNLI, into predicting a specific label. In fact, Ettinger [2020] observed

that for one of three test sets, BERT loses some accuracy in word-perturbed sentences,

but that there exists a subset of examples for which BERT’s accuracy remains intact. If

performance isn’t affected (or if permutation helps, as we find it does in some cases),

it suggests that these state-of-the-art models actually perform somewhat similarly to

bag-of-words models Blei et al. [2003], Mikolov et al. [2013a].

4.7 Discussion

In this chapter, we observe that state-of-the-art models do not rely on sentence struc-

ture the way we think they should: NLI models (Transformer-based models, RNNs,

and ConvNets) are largely insensitive to permutations of word order that corrupt the

original syntax. This raises questions about the extent to which such systems under-

stand “syntax”, and highlights the unnatural language understanding processes they

employ. To summarize, our primary observations from this chapter are:

• NLU models can still perform the task even if the word orders are scrambled

We observed overwhelming evidence in §4.4.1 that state-of-the-art NLU models

tend to perform the task comparably even on word order scrambled text, which

has no inherent semantic meaning.

• Certain permutations allow NLU models to flip classification labels, leading

to better task scores. We find that certain permutations of the order of words

in a given input sentence pair can trigger the model to change the classification
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labels from the baseline, leading to large performance gains in the scores of the

NLI task. For instance, in the examples which the models find difficult to predict,

a permutation of the word order can elicit the model to assign the gold label.

• NLU models display rudimentary understanding of syntax, as evident by the

preservation of abstract parts-of-speech neighborhood information. We do find

that models seem to have learned some syntactic information as is evidenced by a

correlation between preservation of abstract POS neighborhood information and

rate of acceptance by models, but these results do not discount the high rates of

Permutation Acceptance, and require further verification.

Given these findings, and coupled with the observation that humans cannot per-

form UNLI at all well, the high rate of permutation acceptance that we observe leads

us to conclude that current models do not yet “know syntax” in the fully systematic

and humanlike way we would like them to. This study leads us to further investigate

the training dynamics employed by these large language models. In the next chapter,

we will investigate the training data dependency of one such model family in detail,

to shed more light on the sentence processing pipelines employed by these models.

4.8 Follow-up findings in the community

Our work in this chapter was among the first to discover the issue of word order

permutation in the large language models. Concurrent to our publication, Gupta

et al. [2021] and Pham et al. [2020] also converge on similar findings on different NLU

datasets. Thus, our paper opened a new line of inquiry on the susceptibility of word or-

der of language models, and in general encouraging the community to probe the cause

of related systematicity issues displayed by these models. Hessel and Schofield [2021]

arrive at similar conclusions on word-order invariance as demonstrated in our work in
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this chapter. The authors then further utilizes the phenomenon to develop privacy sen-

sitive NLU models which can operate on a bag-of-words representation of a document

without losing task performance. Malkin et al. [2021] also provide similar conclusions

to our work, and they leverage the word-order invariance of Transformer-family of

models to develop a new iterative shuffling inference mechanism to find out the most

likely word order of a sentence according to a given model, and thereby demonstrate

improvements to language modelling and generation. Perez et al. [2021b] take inspira-

tion from the word-order insensitivity results on Transformer models from our work to

develop a novel method, Rissanen Data Analysis, to estimate the models learning abil-

ity by measuring the Minimum Description Length (MDL). MDL captures the training

behavior of the model during the initial stages of fine-tuning. The authors compute the

MDL on various downstream tasks with and without word order shuffling, to find that

models display significantly different learning behavior on word order shuffles than on

the normal mode [Section 4.3.4, pp. 8. Perez et al., 2021a]. However, having different

learning characteristics does not fully explain our results of word-order insensitivity,

indicating the issue requires further study to find out the root cause. Parthasarathi et al.

[2021] extend our experimental setup to investigate how neural machine translation

(NMT) systems translate ungrammatical, shuffled input sentences. They observe that

state-of-the-art NMT models overwhelmingly fix the ungrammaticality of the input in

their translations, thereby exhibiting robust behavior. Clouatre et al. [2022] attempts to

explain the word-order insensitivity issue of several types of neural models, including

Transformer-family of models. They come to the conclusion that neural models across

all types of inductive bias (i.e., including RNN/LSTM/Transformer models) rely on

local structure of text instead of the global structure to build the sentence representa-

tion, which also corroborates to our syntax structure hypothesis (§4.5.1). Webson and

Pavlick [2022] investigate the systematicity issues in prompt-based models, specifi-

cally to gain insights on whether high-performing prompt-based models understand
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the meaning of the said prompts. They find that despite the impressive zero/few-shot

performance of massive language models such as GPT3 [Brown et al., 2020], they lack

proper systematic understanding capability of the provided prompts, so much so that

they produce good predictions even with misleading and irrelevant prompts. Tejankar

et al. [2021] leverage the word order insensitivity of Transformer models to develop a

bag-of-words image captioning model which are trained on synthetically crafted bag-

of-word captions. They achieve superior zero shot performance on ImageNet dataset

by using 1/5th amount of image-caption pairs than the baseline model. The following

chapter is also a direct consequence of the results observed in this work.



89

Chapter 5

Probing syntax understanding through

distributional hypothesis

The field of natural language processing (NLP) has become dominated by the pretrain-

and-finetune paradigm, where we first obtain a good parametric prior in order to sub-

sequently model downstream tasks accurately. In particular, masked language model

(MLM) pre-training, as epitomized by BERT [Devlin et al., 2019b], has proven wildly

successful, although the precise reason for this success has remained unclear. On one

hand, we can view BERT as the newest in a long line of NLP techniques [Deerwester

et al., 1990, Landauer and Dumais, 1997, Collobert and Weston, 2008, Mikolov et al.,

2013b, Peters et al., 2018] that exploit the well-known distributional hypothesis [Harris,

1954]. On the other hand, it has been claimed that BERT “rediscovers the classical NLP

pipeline” [Tenney et al., 2019], suggesting that it has learned “the types of syntactic and

semantic abstractions traditionally believed necessary for language processing” rather

than “simply modeling complex co-occurrence statistics” (ibid. p.1).

In this chapter, we aim to uncover how much of MLM’s success comes from learn-

ing simple distributional information, as opposed to grammatical abstractions [Ten-

ney et al., 2019, Manning et al., 2020]. Thus, in this chapter I discuss our work [Sinha
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et al., 2021a], where we disentangle these two hypotheses by measuring the effect of re-

moving word order information during pre-training: any sophisticated (English) NLP

pipeline would presumably depend on the syntactic information conveyed by the or-

der of words. We find that surprisingly most of MLM’s high performance can in fact be

explained by the “distributional prior” rather than its ability to replicate the classical

NLP pipeline.

Concretely, we pre-train MLMs (RoBERTa, Liu et al. 2019b) on various corpora

with permuted word order while preserving some degree of distributional informa-

tion, and examine their downstream performance. We also experiment with train-

ing MLMs without positional embeddings, making them entirely order agnostic, and

with training on a corpus sampled from the source corpus’s unigram distribution. We

then evaluate these “permuted” models in a wide range of settings and compare with

regularly-pre-trained models.

We demonstrate that pre-training on permuted data has surprisingly little effect on

downstream task performance after fine-tuning (on non-shuffled training data). In our

previous chapter we observed that MLMs are quite robust to permuting downstream

test data (§4.4.1) and even do quite well using permuted “unnatural” downstream train

data [Sinha et al., 2021b, Gupta et al., 2021]. In this chapter, we show that downstream

performance for “unnatural language pre-training” is much closer to standard MLM

pre-training than one might expect.

In an effort to shed light on these findings, we experiment with various probing

tasks. We verify via non-parametric probes that the permutations do in fact make the

model worse at syntax-dependent tasks. However, just like on the downstream fine-

tuning tasks, permuted models perform well on parametric syntactic probes, in some

cases almost matching the unpermuted model’s performance, which is quite surprising

given how important word order is crosslinguistically (Greenberg 1963, Dryer 1992,

Cinque 1999, i.a.).
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Our results can be interpreted in different ways. One could argue that our down-

stream and probing tasks are flawed, and that we need to examine models with ex-

amples that truly test strong generalization and compositionality. Alternatively, one

could argue that prior works have overstated the dependence of human language un-

derstanding on word order, and that human language understanding depends less on

the structure of the sentence and more on the structure of the world, which can be in-

ferred to a large extent from distributional information. This work is meant to deepen

our understanding of MLM pre-training and, through this, move us closer to finding

out what is actually required for adequately modelling natural language.

5.1 Technical Background

Masked Language Modelling (MLM) is a pre-training technique popularized by BERT

[Devlin et al., 2019b]. Unlike the autoregressive processing of traditional Transformer

[Vaswani et al., 2017] models, BERT introduces bi-directional attention mechanism in

which the model no longer have to restrict attentions to past tokens: the model can

now attend to any tokens in the input, in both left-to-right and right-to-left directions

(§2.2.4). To train such bi-directional self-attention models, MLM pre-training is used

where first the input sentence is corrupted by replacing 15% of tokens with mask token

(<MASK>), and then the training objective entails predicting the masked tokens in the

output. Thus, to predict any mask token, the model can attend to the entire context

(hence the bi-directionality). This kind of pre-training technique allows models to be

trained in larger batch sizes, effectively utilizing the GPU operations. Having access to

bi-directional context also allows the model to learn long-range dependencies.
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5.2 Experimental Setup

5.2.1 Sentence word order permutation

To investigate to what extent the performance of MLM pre-training is a consequence of

distributional information, we construct a training corpus devoid of natural word or-

der but preserving local distributional information. We construct word order-randomized

versions of the BookWiki corpus (the Toronto Books Corpus, [Zhu et al., 2015], plus

English Wikipedia) from Liu et al. [2019b], following the setup described in §4.2. Con-

cretely, given a sentence S containing N words, we permute the sentence using a

seeded random function F1 such that no word can remain in its original position. In

total, there exist (N − 1)! possible permutations of a given sentence. We randomly

sample a single permutation per sentence, to keep the total dataset size similar to the

original.

We extend the permutation function F1 to a function Fn that preserves n-gram in-

formation. Specifically, given a sentence S of length N and n-gram value n, we sample

a starting position i for possible contiguous n-grams ∈ {0,N −n} and convert the span

S[i, i + n] to a single token, to form Ŝ, of length N̂ = N − (n + 1). We continue this

process repeatedly (without using the previously created n-grams) until there exists

no starting position for selecting a contiguous n-gram in Ŝ. For example, given a sen-

tence of length N = 6, F4 will first convert one span of 4 tokens into a word, to have

Ŝ consisting of three tokens (one conjoined token of 4 contiguous words, and two left-

over words). Then, the resulting sentence Ŝ is permuted using F1. We train RoBERTa

models on four permutation variants of BookWiki corpus,M1,M2,M3,M4 for each

n-gram value ∈ {1,2,3,4}.

We provide pseudo-code for Fi in Algorithm 1. Following the formulation in §4.2,

we do not explicitly control whether the permuted words maintain any of their original

neighbors. Thus, a certain amount of extra n-grams are expected to co-occur, purely
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as a product of random shuffling. We quantify the amount of such shuffling on a

sample of 1 million sentences drawn from the BookWiki random corpus, and present

the BLEU-2, BLEU-3 and BLEU-4 scores in Table 5.1. We provide a sample snapshot of

the generated data in Table 5.18.

BLEU-2 BLEU-3 BLEU-4
M1 0.493 +/- 0.12 0.177 +/- 0.16 0.040 +/- 0.11
M2 0.754 +/- 0.07 0.432 +/- 0.18 0.226 +/- 0.19
M3 0.824 +/- 0.06 0.650 +/- 0.09 0.405 +/- 0.20
M4 0.811 +/- 0.08 0.671 +/- 0.11 0.553 +/- 0.12

Table 5.1 BLEU-2,3,4 scores (mean and std dev) on a sample of 1M sen-
tences drawn from the corpus used to train M1, M2, M3and M4 com-
pared toMN.

5.2.2 Corpus word order bootstrap resample

The above permutations preserve higher order distributional information by keep-

ing words from the same sentence together. However, we need a baseline to under-

stand how a model would perform without such co-occurrence information. We con-

struct a baseline, MUG, that captures word/subword information, without access to

co-occurrence statistics. To construct MUG, we sample unigrams from BookWiki ac-

cording to their frequencies, while also treating named entities as unigrams. We lever-

age Spacy [Honnibal et al., 2020]1 to extract unigrams and named entities from the cor-

pus, and constructMUG by drawing words from this set according to their frequency.

This allows us to construct MUG such that it has exactly the same size as BookWiki

but without any distributional (i.e. co-occurrence) information beyond the unigram

frequency distribution. Our hypothesis is that any model pre-trained on this data will

perform poorly, but it should provide a baseline for the limits on learning language of

the inductive bias of the model in isolation.
1https://spacy.io/

https://spacy.io/
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Algorithm 1 SentenceRandomizer
1: procedure F(S, t,n) ▷ Randomize a sentence S with seed t and n grams n
2: W = tokenize the words in S
3: Set the seed to t
4: if n > 1 then
5: while True do
6: K = Sample all possible starting points from [0, |W |−n]
7: Ignore the starting points in K which overlap with conjoined tokens ▷

Conjoined tokens consists of joined unigrams
8: if |K|≥ 1 then
9: Sample one position p ∈K

10: g = Extract the n-gram W [p : p+ n]
11: Delete W [p+ 1 : p+ n]
12: W [p] = Convert g to a conjoined token
13: else
14: Break from While loop
15: while True do
16: Ŵ = randomly shuffle tokens in W
17: r =

∑
(Ŵ [i] =W [i]) ▷ Count number of positions where the token remains in its

original position
18: if r = 0 then Break out of While loop
19: Ŝ = join the tokens in Ŵ
20: Return Ŝ
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5.2.3 Further baselines

To investigate what happens if a model has absolutely no notion of word order, we

also experiment with pre-training RoBERTa on the original corpus without positional

embeddings. Concretely, we modify the RoBERTa architecture to remove the positional

embeddings from the computation graph, and then proceed to pre-train on the natural

order BookWiki corpus. We denote this modelMNP. Finally, we consider a randomly

initialized RoBERTa model MRI to observe the extent we can learn from each task

with only the model’s base inductive bias.

5.3 Evaluated Models & Tasks

We use the RoBERTa (base) [Liu et al., 2019b] MLM architecture, due to its relative com-

putational efficiency and good downstream task performance. We expect that other

variants of MLMs would provide similar insights, given their similar characteristics.

In all of our experiments, we use the original 16GB BookWiki corpus.2 We denote

the model trained on the original, un-modified BookWiki corpus as MN (for “natu-

ral”). We use two types of word order randomization methods: permuting words at

the sentence level, and resampling words at the corpus level.

5.3.1 Pre-training details

Each model ∈ {MN, M1, M2, M3, M4, MUG, MNP} is a RoBERTa-base model

(12 layers, hidden size of 768, 12 attention heads, 125M parameters), trained for 100k

updates using 8k batch-size, 20k warmup steps, and 0.0006 peak learning rate. These

are identical hyperparameters to Liu et al. [2019b], except for the number of warmup

steps which we changed to 20k for improved training stability. Each model was trained

2We release the pre-trained RoBERTa models used in our experiments through the FairSeq repository:
https://github.com/pytorch/fairseq/tree/master/examples /shuffled_word_order.

https://github.com/pytorch/fairseq/tree/master/examples/shuffled_word_order
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Figure 5.1 Perplexity of various models on Wiki 103 valid and test sets.

using 64 GPUs for up to 72 hours each. We train three seeds for each data configuration.

We use FairSeq [Ott et al., 2019] for the pre-training and fine-tuning experiments. We

use the Wiki 103 validation and test set to validate and test the array of pre-trained

models, as validation on this small dataset is quick, effective, and reproducible for

comparison among publicly available datasets (Figure 5.1). We observe that perplexity

monotonically increases fromMN, throughM4–M1, toMUG, and finallyMNP.

5.3.2 Fine-tuning tasks

We evaluate downstream performance using the General Language Understanding

and Evaluation (GLUE) benchmark, the Paraphrase Adversaries from Word Scram-

bling (PAWS) dataset, and various parametric and non-parametric tasks (see §5.4.2).

GLUE. The GLUE [Wang et al., 2018] benchmark is a collection of 9 datasets for evalu-

ating natural language understanding systems, of which we use Corpus of Linguistic

Acceptability [CoLA, Warstadt et al., 2019b], Stanford Sentiment Treebank [SST, Socher

et al., 2013], Microsoft Research Paragraph Corpus [MRPC, Dolan and Brockett, 2005],



5 Probing syntax understanding through distributional hypothesis 97

Quora Question Pairs (QQP)3, Multi-Genre NLI [MNLI, Williams et al., 2018c], Ques-

tion NLI [QNLI, Rajpurkar et al., 2016, Demszky et al., 2018], Recognizing Textual En-

tailment [RTE, Giampiccolo et al., 2007a, Haim et al., 2006, Giampiccolo et al., 2007b,

Bentivogli et al., 2009]. Pham et al. [2020] show the word order insensitivity of several

GLUE tasks (QQP, SST-2), evaluated on public regularly pre-trained checkpoints.

PAWS. The PAWS task [Zhang et al., 2019] consists of predicting whether a given

pair of sentences are paraphrases. This dataset contains both paraphrase and non-

paraphrase pairs with high lexical overlap, which are generated by controlled word

swapping and back translation. Since even a small word swap and perturbation can

drastically modify the meaning of the sentence, we hypothesize the randomized pre-

trained models will struggle to attain a high performance on PAWS.

Fine-tuning details. We use the same fine-tuning methodology used by Liu et al.

[2019b], where we run hyperparameter search over the learning rates {1 × 10−5,2 ×

10−5,3× 10−5} and batch sizes {16,32} for each model. For the best hyperparam con-

figurations of each model, we fine-tune with 5 different seeds and report the mean

and standard deviation for each setting.MNP is fine-tuned without positional embed-

dings, matching the way it was pre-trained.

5.4 Results

5.4.1 Downstream task results

In this section, we present the downstream task performance of the models defined in

§5.2. For evaluation, we report Matthews correlation for CoLA and accuracy for all

other tasks.
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Model QNLI RTE QQP SST-2 MRPC PAWS MNLI-m/mm CoLA

MN 92.45 +/- 0.2 73.62 +/- 3.1 91.25 +/- 0.1 93.75 +/- 0.4 89.09 +/- 0.9 94.49 +/- 0.2 86.08 +/- 0.2 / 85.4 +/- 0.2 52.45 +/- 21

M4 91.65 +/- 0.1 70.94 +/- 1.2 91.39 +/- 0.1 92.46 +/- 0.3 86.90 +/- 0.3 94.26 +/- 0.2 83.79 +/- 0.2 / 83.94 +/- 0.3 35.25 +/- 32
M3 91.56 +/- 0.4 69.75 +/- 2.8 91.22 +/- 0.1 91.97 +/- 0.5 86.22 +/- 0.8 94.03 +/- 0.1 83.83 +/- 0.2 / 83.71 +/- 0.1 40.78 +/- 23
M2 90.51 +/- 0.1 70.00 +/- 2.5 91.33 +/- 0.0 91.78 +/- 0.3 85.90 +/- 1.2 93.53 +/- 0.3 83.45 +/- 0.3 / 83.54 +/- 0.3 50.83 +/- 5.8
M1 89.05 +/- 0.2 68.48 +/- 2.5 91.01 +/- 0.0 90.41 +/- 0.4 86.06 +/- 0.8 89.69 +/- 0.6 82.64 +/- 0.1 / 82.67 +/- 0.2 31.08 +/- 10

MNP 77.59 +/- 0.3 54.78 +/- 2.2 87.78 +/- 0.4 83.21 +/- 0.6 72.78 +/- 1.6 57.22 +/- 1.2 63.35 +/- 0.4 / 63.63 +/- 0.2 2.37 +/- 3.2
MUG 66.94 +/- 9.2 53.70 +/- 1.0 85.57 +/- 0.1 83.17 +/- 1.5 70.57 +/- 0.7 58.59 +/- 0.3 71.93 +/- 0.2 / 71.33 +/- 0.5 0.92 +/- 2.1
MRI 62.17 +/- 0.4 52.97 +/- 0.2 81.53 +/- 0.2 82.0 +/- 0.7 70.32 +/- 1.5 56.62 +/- 0.0 65.70 +/- 0.2 / 65.75 +/- 0.3 8.06 +/- 1.6

Table 5.2 GLUE and PAWS-Wiki dev set results on different RoBERTa
(base) models trained on variants of the BookWiki corpus (with mean and
std). The top row is the original model, the middle half contains our primary
models under investigation, and the bottom half contains the baselines.

Word order permuted pre-training

In our first set of experiments, we finetune the pre-trained models on the GLUE and

PAWS tasks. We report the results in Table 5.2.4 First, we observe that the model

without access to distributional or word order information,MUG (unigram) performs

much worse than MN overall: MUG is 18 points worse than MN on average across

the accuracy-based tasks in Table 5.2 and has essentially no correlation with human

judgments on CoLA.MUG MNP andMRI perform comparably on most of the tasks,

while achieving surprisingly high scores in QQP and SST-2. However, all three models

perform significantly worse on GLUE and PAWS, compared toMN (Table 5.2, bottom

half).MUG reaches up to 71.9 on MNLI - possibly due to the fact thatMUG has access

to (bags of) words and some phrases (from NER) is beneficial for MNLI. For the ma-

jority of tasks, the difference betweenMNP andMRI is small - a pure bag of words

model performs comparably to a randomly initialized model.

Next, we observe a significant improvement on all tasks when we give models ac-

3http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
4TheMN results are not directly comparable with that of publicly released roberta-base model

by Liu et al. [2019b], as that uses the significantly larger 160GB corpus, and is trained for 500K updates.
For computational reasons, we restrict our experiments to the 16GB BookWiki corpus and 100K updates,
mirroring the RoBERTa ablations.

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Figure 5.2 GLUE & PAWS task dev performance when finetuned on nat-
urally (blue) and randomly ordered (orange) text, respectively, using pre-
trained RoBERTa (base) models trained on different versions of BookWiki
corpus.

cess to sentence-level distributional information during pre-training. M1, the model

pre-trained on completely shuffled sentences, is on average only 3.3 points lower than

MN on the accuracy-based tasks, and within 0.3 points ofMN on QQP. Even on PAWS,

which was designed to require knowledge of word order, M1 is within 5 points of

MN. Randomizing n-grams instead of words during pre-training results in a (mostly)

smooth increase on these tasks: M4, the model pre-trained on shuffled 4-grams, trails

MN by only 1.3 points on average, and even comes within 0.2 points ofMN on PAWS.

We observe a somewhat different pattern on CoLA, where M2 does almost as well

as MN and outperforms M3 and M4, though we also observe very high variance

across random seeds for this task. Crucially, we observe thatM1 outperformsMNP

by a large margin. This shows that positional embeddings are critical for learning, even

when the word orders themselves are not natural. Recall,MNP is fed natural sentences
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asMN while not having the ability to learn positional embeddings. To further quan-

tify the effect of positional embeddings, we also investigated the effect of shuffling the

entire context window, to keep the co-occurrence information same asMNP in §5.5.1.

We observed this model to be worse than M1 but significantly better than MNP to

support the claim about the importance of positional embeddings while training.

Overall, these results confirm our hypothesis that RoBERTa’s strong performance

on downstream tasks can be explained for a large part by the distributional prior.

Word order permuted fine-tuning

There are two possible explanations for the results in §5.4.1: either the tasks do not need

word order information to be solved, or any necessary word order information can be

acquired during fine-tuning. To examine this question, we permute the word order

during fine-tuning as well. Concretely, for each task, we construct a unigram order-

randomized version of each example in the fine-tuning training set using F1. We then

fine-tune our pre-trained models on this shuffled data and evaluate task performance.

For all experiments, we evaluate and perform early stopping on the original, natural

word order dev set, in order to conduct a fair evaluation on the exact same optimization

setup for all models.

Our results in Figure 5.2 provide some evidence for both hypotheses. On QQP and

QNLI, accuracy decreases only slightly for models fine-tuned on shuffled data. Models

can also achieve above 80% accuracy on MNLI, SST-2, and MRPC when fine-tuned on

shuffled data, suggesting that purely lexical information is quite useful on its own.

On the other hand, for all datasets besides QQP and QNLI, we see noticeable drops

in accuracy when fine-tuning on shuffled data and testing on normal order, both for

MN and for shuffled models M1 through M4. This suggests both that word order

information is useful for these tasks, and that shuffled models must be learning to use
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word order information during fine-tuning.5 Having word order during fine-tuning is

especially important for achieving high accuracy on CoLA, RTE (cf. Pham et al. 2020),

as well as PAWS, suggesting that these tasks are the most word order reliant. Recent re-

search [Yu and Ettinger, 2021] raised some questions about potential artefacts inflating

performance on PAWS: their swapping-distance cue of appears consistent both with

our finding of high PAWS performance for n-gram shuffled models in Table 5.2, and

with our PAWS results in Figure 5.2, which suggests that PAWS performance does in

fact rely to some extent on natural word order at the fine-tuning stage.

Finally, for CoLA, MRPC, and RTE, performance is higher after fine-tuning on shuf-

fled data for M1 than MN. We hypothesize that MN represents shuffled and non-

shuffled sentences very differently, resulting in a domain mismatch problem when

fine-tuning on shuffled data but evaluating on non-shuffled data.6 Since M1 never

learns to be sensitive to word order during pre-training or fine-tuning, it does not suf-

fer from that issue. Our results in this section also highlights the issues with these

datasets, concurrent to the findings that many GLUE tasks does not need sophisticated

linguistic knowledge to solve, as models typically tend to exploit the statistical arte-

facts and spurious correlations during fine-tuning (cf. Gururangan et al. 2018, Poliak

et al. 2018, Tsuchiya 2018, McCoy et al. 2019b). However, our results overwhelmingly

support the fact that word order does not matter during pre-training, if the model

has the opportunity to learn the necessary information about word order during fine-

tuning.

5We perform additional experiments on how the model representations change during fine-tuning
for shuffled training using Risannen Data Analysis in §5.5.6.

6We further study the domain mismatch problem by evaluating on shuffled data after fine-tuning on
the shuffled data for models in §5.5.3. We observe that models improves their scores on evaluation on
shuffled data when the training data source is changed from natural to shuffled - highlighting domain
match effect.
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5.4.2 Probing results

To investigate how much syntactic information is contained in the MLM represen-

tations, we evaluate several probing tasks on our trained models. We consider two

classes of probes: parametric probes, which make use of learnable parameters, and non-

parametric probes, which directly examine the language model’s predictions.

Parametric Probing

To probe our models for syntactic, semantic and other linguistic properties, we investi-

gate dependency parsing using Pareto probing [Pimentel et al., 2020a] and the probing

tasks from Conneau et al. [2018a] in SentEval [Conneau and Kiela, 2018].

Pimentel et al. [2020a] proposed a framework based on Pareto optimality to probe

for syntactic information in contextual representations. They suggest that an optimal

probe should balance optimal performance on the probing task with the complexity

of the probe. Following their setup, we use the “difficult” probe: dependency pars-

ing (DEP). We also investigate the “easy” probes, dependency arc labeling (DAL) and

POS tag prediction (POS), results are reported §5.5.8. We probe with Linear and MLP

probes, and inspect the task accuracy in terms of Unlabeled Attachment Score (UAS).

The dependency parsing probe used in Pimentel et al. [2020a] builds on the Biaffine

Dependency Parser [Dozat and Manning, 2017], but with simple MLPs on top of the

Transformer representations.7

Training setup. Similar to the setup by Pimentel et al. [2020a], we run 50 random hy-

perparameter searches on both MLP and Linear probes by uniformly sampling from

the number of layers (0-5), dropout (0-0.5), log-uniform hidden size [25,210]. We triple

this experiment size by evaluating on three pre-trained models of different seeds for

each model configuration. We consider Pimentel et al.’s English dataset, derived from
7We experimented with a much stronger, state-of-the-art Second order Tree CRF Neural Dependency

Parser Zhang et al. [2020], but did not observe any difference in UAS with different pre-trained models
(see §5.5.4)
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Universal Dependencies EWT (UD EWT) [Bies et al., 2012, Silveira et al., 2014] which

contains 12,543 training sentences. Additionally, we experiment on the Penn Treebank

dataset (PTB), which contains 39,832 training sentences.8 We report the mean test ac-

curacy over three seeds for the best dev set accuracy for each task.9

Model UD EWT PTB
MLP Linear MLP Linear

MN 80.41 +/- 0.85 66.26 +/- 1.59 86.99 +/- 1.49 66.47 +/- 2.77

M4 78.04 +/- 2.06 65.61 +/- 1.99 85.62 +/- 1.09 66.49 +/- 2.02
M3 77.80 +/- 3.09 64.89 +/- 2.63 85.89 +/- 1.01 66.11 +/- 1.68
M2 78.22 +/- 0.88 64.96 +/- 2.32 84.72 +/- 0.55 64.69 +/- 2.50
M1 69.26 +/- 6.00 56.24 +/- 5.05 79.43 +/- 0.96 57.20 +/- 2.76

MUG 74.15 +/- 0.93 65.69 +/- 7.35 80.07 +/- 0.79 57.28 +/- 1.42

Table 5.3 Unlabeled Attachment Score (UAS) (mean and std) on the de-
pendency parsing task (DEP) on two datasets, UD EWT and PTB, using the
Pareto Probing framework [Pimentel et al., 2020a].

Model Length WordContent TreeDepth TopConstituents BigramShift Tense SubjNumber ObjNumber OddManOut CoordInversion
(Surface) (Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)

MN 78.92 +/- 1.91 31.83 +/- 1.75 35.97 +/- 1.38 78.26 +/- 4.08 81.82 +/- 0.55 87.83 +/- 0.51 85.05 +/- 1.23 75.94 +/- 0.68 58.40 +/- 0.33 70.87 +/- 2.46

M4 92.88 +/- 0.15 57.78 +/- 0.36 40.05 +/- 0.29 72.50 +/- 0.51 76.12 +/- 0.29 88.32 +/- 0.13 85.65 +/- 0.13 82.95 +/- 0.05 58.89 +/- 0.30 61.31 +/- 0.19
M3 91.52 +/- 0.16 48.81 +/- 0.26 38.63 +/- 0.61 70.29 +/- 0.31 77.36 +/- 0.12 86.74 +/- 0.12 83.83 +/- 0.38 80.99 +/- 0.26 57.01 +/- 0.21 60.00 +/- 0.26
M2 93.54 +/- 0.29 62.52 +/- 0.21 41.40 +/- 0.32 74.31 +/- 0.29 75.44 +/- 0.14 87.91 +/- 0.35 84.88 +/- 0.11 83.98 +/- 0.14 57.60 +/- 0.36 59.46 +/- 0.37
M1 88.33 +/- 0.14 64.03 +/- 0.34 40.24 +/- 0.20 70.94 +/- 0.38 58.37 +/- 0.40 87.88 +/- 0.08 83.49 +/- 0.12 83.44 +/- 0.06 56.51 +/- 0.26 56.98 +/- 0.50

MUG 86.69 +/- 0.33 36.60 +/- 0.33 32.53 +/- 0.76 61.54 +/- 0.60 57.42 +/- 0.04 68.45 +/- 0.23 71.25 +/- 0.12 66.63 +/- 0.21 50.06 +/- 0.40 56.26 +/- 0.17

Table 5.4 SentEval Probing [Conneau et al., 2018a, Conneau and Kiela,
2018] results (with mean and std) on different model variants.

Results. We observe that the UAS scores follow a similar linear trend as the fine-

tuning results in that M1≈ MUG< M2< M3< M4< MN (Table 5.3). Surprisingly,

MUG probing scores seem to be somewhat better thanM1 (though with large overlap

in their standard deviations), even though MUG cannot learn information related to

either word order or co-occurrence patterns. The performance gap appears to be task-

and probe specific. We observe a low performance gap in several scenarios, the lowest

being betweenMN vs.M3/M4, for PTB using the both MLP and Linear probes.
8PTB data [Kitaev et al., 2019] is used from github.com/nikitakit/self-attentive-

parser/tree/master/data.
9Pimentel et al. [2020a] propose computing the Pareto Hypervolume over all hyperparameters in each

task. We did not observe a significant difference in the hypervolumes for the models, as reported in
§5.5.8.

https://github.com/nikitakit/self-attentive-parser/tree/master/data
https://github.com/nikitakit/self-attentive-parser/tree/master/data
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SentEval Probes

We also investigate the suite of 10 probing tasks [Conneau et al., 2018a] available in the

SentEval toolkit [Conneau and Kiela, 2018]. This suite contains a range of semantic,

syntactic and surface level tasks. Jawahar et al. [2019b] utilize this set of probing tasks

to arrive at the conclusion that “BERT embeds a rich hierarchy of linguistic signals: surface

information at the bottom, syntactic information in the middle, semantic information at the

top”. We re-examine this hypothesis by using the same probing method and comparing

against models trained with random word order.

Training setup. We run the probes on the final layer of each of our pre-trained models

for three seeds, while keeping the encoder frozen. SentEval trains probes on top of

fixed representations individually for each task. We follow the recommended setup

and run grid search over the following hyperparams: number of hidden layer dimen-

sions ([0,50,100,200]), dropout ([0,0.1,0.2]), 4 epochs, 64 batch size. We select the best

performance based on the dev set, and report the test set accuracy.

Results. We provide the results in Table 5.4. TheMN pre-trained model scores better

than the unnatural word order models for only one out of five semantic tasks and in

none of the lexical tasks. However,MN does score higher for two out of three syntactic

tasks. Even for these two syntactic tasks, the gap amongMUG andMN is much higher

than M1 and MN. These results show that while natural word order is useful for

at least some probing tasks, the distributional prior of randomized models alone is

enough to achieve a reasonably high accuracy on syntax sensitive probing.

Non-Parametric Probing

How to probe effectively with parametric probes is a matter of much recent debate [Hall Maud-

slay et al., 2020, Belinkov, 2021]. From our results so far, it is unclear whether para-

metric probing meaningfully distinguishes models trained with corrupted word or-

der from those trained with normal orders. Thus, we also investigate non-parametric
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probes [Linzen et al., 2016, Marvin and Linzen, 2018, Gulordava et al., 2018a] using the

formulation of Goldberg [2019] and Wolf [2019a].

We consider a set of non-parametric probes that use a range of sentences varying in

their linguistic properties. For each, the objective is for a pre-trained model to provide

higher probability to a grammatically correct word than to an incorrect one. Since

both the correct and incorrect options occupy the same sentential position, we call

them “focus words”. Linzen et al. [2016] use sentences from Wikipedia containing

present-tense verbs, and compare the probability assigned by the encoder to plural

vs. singular forms of the verb; they focus on sentences containing at least one noun

between the verb and its subject, known as “agreement attractors.” Gulordava et al.

[2018a] instead replace focus words with random substitutes from the same part-of-

speech and inflection. Finally, Marvin and Linzen [2018] construct minimal pairs of

grammatical and ungrammatical sentences, and compare the model’s probability for

the words that differ.

Setup. In our experiments, we mask the focus words in the stimuli and compute the

probability of the correct and incorrect token respectively. To handle Byte-Pair Encod-

ing (BPE), we use the WordPiece [Wu et al., 2016] tokens prepended with a space. We

observe that the Linzen et al. [2016] and Gulordava et al. [2018a] datasets are skewed

towards singular focus words, which could disproportionately help weaker models

that just happen to assign more probability mass to singular focus words. To counter

this, we balance these datasets to have an equal number of singular and plural focus

words by upsampling, and report the aggregated and balanced results in Table 5.5 (see

§5.5.9 for more detailed results). We verify our experiments by using three pre-trained

models with different seeds for each model configuration.

Results. We observe for the Linzen et al. [2016] and Marvin and Linzen [2018] datasets

that the gap between theMN and randomization models is relatively large. The Gu-

lordava et al. [2018a] dataset shows a smaller gap betweenMN and the randomization
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models. While some randomization models (e.g.,M2,M3, andM4) performed quite

similarly toMN according to the parametric probes, they all are markedly worse than

MN according to the non-parametric ones. This suggests that non-parametric probes

identify certain syntax-related modeling failures that parametric ones do not.

Model Linzen et al. [2016] ∗ Gulordava et al. [2018b] ∗ Marvin and Linzen [2018]

MN 91.17 +/- 2.6 68.66 +/- 11.6 88.05 +/- 6.5
M4 66.93 +/- 3.2 69.47 +/- 4.9 70.66 +/- 12.5
M3 64.60 +/- 2.7 66.10 +/- 5.9 73.82 +/- 15.7
M2 61.27 +/- 3.1 60.20 +/- 7.6 73.95 +/- 14.3
M1 58.96 +/- 1.8 68.10 +/- 14.4 70.69 +/- 11.6
MUG 65.36 +/- 7.1 60.88 +/- 24.3 50.10 +/- 0.2

Table 5.5 Mean (and std) non-parametric probing accuracy on different
datasets. ∗ indicates rebalanced datasets, see §5.5.9 for more details.

5.5 Analysis

5.5.1 Word-order pre-training ablations

We also train further model ablations with low to high distributional priors. Following

the construction of the corpus bootstrap resample, we train a model where words are

drawn uniformly from BookWiki corpus, thus destroying the natural frequency dis-

tribution (MUF). We further study an ablation for a high distributional prior,M512,

where we shuffle words (unigram) in a buffer created with joining multiple sentences

such that maximum token length of the buffer is 512. This ablation—which is simi-

lar to the paragraph word shuffle condition in Gauthier and Levy [2019]—will allow

us to study the effect of unigram shuffling in a window larger than the one for M1.

Buffer size is chosen to be 512 because BERT/RoBERTa is typically trained with that

maximum sequence length.

We observe dev set results on the GLUE benchmark of these ablations, along with
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Model QNLI RTE QQP SST-2 MRPC PAWS MNLI-m/mm CoLA

MN 92.45 +/- 0.2 73.62 +/- 3.1 91.25 +/- 0.1 93.75 +/- 0.4 89.09 +/- 0.9 94.49 +/- 0.2 86.08 +/- 0.2 / 85.4 +/- 0.2 52.45 +/- 21.2

M4 91.65 +/- 0.1 70.94 +/- 1.2 91.39 +/- 0.1 92.46 +/- 0.3 86.90 +/- 0.3 94.26 +/- 0.2 83.79 +/- 0.2 / 83.94 +/- 0.3 35.25 +/- 32.2
M3 91.56 +/- 0.4 69.75 +/- 2.8 91.22 +/- 0.1 91.97 +/- 0.5 86.22 +/- 0.8 94.03 +/- 0.1 83.83 +/- 0.2 / 83.71 +/- 0.1 40.78 +/- 23.0
M2 90.51 +/- 0.1 70.00 +/- 2.5 91.33 +/- 0.0 91.78 +/- 0.3 85.90 +/- 1.2 93.53 +/- 0.3 83.45 +/- 0.3 / 83.54 +/- 0.3 50.83 +/- 5.80
M1 89.05 +/- 0.2 68.48 +/- 2.5 91.01 +/- 0.0 90.41 +/- 0.4 86.06 +/- 0.8 89.69 +/- 0.6 82.64 +/- 0.1 / 82.67 +/- 0.2 31.08 +/- 10.0

M512 84.97 +/- 0.3 56.09 +/- 0.6 90.15 +/- 0.1 86.11 +/- 0.7 79.41 +/- 0.6 77.3 +/- 12.63 77.58 +/- 0.3 / 77.89 +/- 0.4 12.54 +/- 5.57
MNP 77.59 +/- 0.3 54.78 +/- 2.2 87.78 +/- 0.4 83.21 +/- 0.6 72.78 +/- 1.6 57.22 +/- 1.2 63.35 +/- 0.4 / 63.63 +/- 0.2 2.37 +/- 3.20
MUF 77.69 +/- 0.4 53.84 +/- 0.6 85.92 +/- 0.1 84.00 +/- 0.6 71.35 +/- 0.8 58.43 +/- 0.3 72.10 +/- 0.4 / 72.58 +/- 0.4 8.89 +/- 1.40
MUG 66.94 +/- 9.2 53.70 +/- 1.0 85.57 +/- 0.1 83.17 +/- 1.5 70.57 +/- 0.7 58.59 +/- 0.3 71.93 +/- 0.2 / 71.33 +/- 0.5 0.92 +/- 2.10
MRI 62.17 +/- 0.4 52.97 +/- 0.2 81.53 +/- 0.2 82.0 +/- 0.7 70.32 +/- 1.5 56.62 +/- 0.0 65.70 +/- 0.2 / 65.75 +/- 0.3 8.06 +/- 1.60

Table 5.6 GLUE and PAWS-Wiki dev set results on different ablations of
the RoBERTa (base) models, trained on variants of the BookWiki corpus
(with mean and std dev). The top row is the original model, the middle
half contains the sentence randomization models, and the bottom half con-
tains the ablations.

Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

M1 68.48 85.97 90.41 31.07 91.01 89.05 82.64 89.69
M1

∗ 68.41 85.75 90.17 50.14 91.02 89.50 82.92 91.99

Table 5.7 Reconstruction experiments on shuffled word order sentences
by fixing the same seed for every sentence (M1) and having different seed
for different shards of the corpus (M1

∗). We observe minimal difference in
the downstream GLUE and PAWS scores.

baselinesMUG,MRI andMNP and random shuffles in Table 5.6 and Figure 5.3. We

observe that M512 exhibits worse overall scores than M1, however it is still signif-

icantly better than MNP or MUG baselines. We observe that destroying the natural

frequency distribution of words (MUF) yields comparable or slightly better results

compared to random corpus model MUG. This result shows that merely replicating

the natural distribution of words without any context is not useful for the model to

learn. These results indicate that at least some form of distributional prior is required

for MLM-based models to learn a good downstream representation.

One might argue that the superior results displayed by the unnatural models is

due to the ability of RoBERTa to “reconstruct” the natural word order from shuffled

sentences. The data generation algorithm, Fi requires a seed t for every sentence. In
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Figure 5.3 GLUE results on various model ablations using BookWiki cor-
pus.

our experiments, we had set the same seed for every sentence in the corpus to ensure

reproducibility. However, it could be problematic if the sentences of the same length

are permuted with the same seed, which could be easier for the model to “reconstruct”

the natural word order to learn the necessary syntax. We tested this hypothesis by

constructing a new corpus with different seeds for every sentence in every shard in the

corpus (1/5th of BookWiki corpus is typically referred to as a shard for computational

purposes), to build the modelM1
∗. We observe that there is minimal difference in the

raw numbers amongM1 andM1
∗ for most of the tasks (Table 5.7) (with the exception

of CoLA which performs similar toM2 possibly due to a difference in initialization).

This result consequently proves that even with same seed, it is difficult for the model

to just reconstruct the unnatural sentences during pre-training.



5 Probing syntax understanding through distributional hypothesis 109

Model QNLI RTE QQP SST-2 MRPC CoLA PAWS MNLI

M1 3.70 7.04 0.26 3.58 3.42 40.74 5.12 3.62
M2 2.11 4.95 -0.09 2.12 3.61 3.09 9.06 2.63
M3 0.97 5.30 0.03 1.91 3.24 22.25 0.49 2.31
M4 0.87 3.67 -0.15 1.39 2.47 32.79 0.25 2.19

MUG 27.74 27.25 6.26 11.35 20.91 98.24 38.20 16.56
MNP 16.16 25.77 3.83 11.30 18.42 95.48 39.66 26.10

Table 5.8 ∆{Di}(T ), scaled by a factor of 100 for GLUE and PAWS tasks.

5.5.2 Measuring Relative difference

In this section, we further measure the difference in downstream task performance re-

ported in §5.4.1 using as a metric the relative difference. Let us denote the downstream

task performance as A(T |D), where T is the task and D is the pre-trained model. We

primarily aim to evaluate the relative performance gap, i.e. how much the perfor-

mance differs between our natural and unnatural models. Thus, we define the Relative

Difference (∆{D}(T )):

∆{D}(T ) =
A(T |OR)−A(T |D))

A(T |OR)−A(T |∅)
, (5.1)

whereA(T |∅) is the random performance on the task T (0.33 for MNLI, 0 for CoLA,

and 0.5 for rest) ∆{D}(T )→ 0 when the performance of a pre-trained model reaches that

of the pre-trained model trained with natural word order.

We observe the relative difference on the tasks in Table 5.8. CoLA has the largest

∆{D}(T ) among all tasks, suggesting the expected high word order reliance. ∆{D}(T )

is lowest for QQP.
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name fine-tune-train fine-tune-eval MNLI QNLI RTE CoLA MRPC SST-2 PAWS

MN natural natural 86.08 +/- 0.15 92.45 +/- 0.24 73.62 +/- 3.09 52.44 +/- 21.22 89.09 +/- 0.88 93.75 +/- 0.44 94.49 +/- 0.18
natural shuffled 68.11 +/- 0.52 81.08 +/- 0.38 56.72 +/- 3.29 4.77 +/- 1.82 75.94 +/- 1.01 80.78 +/- 0.37 62.22 +/- 0.09
shuffled natural 82.99 +/- 0.16 89.32 +/- 0.23 57.9 +/- 4.71 0.0 +/- 0.0 79.71 +/- 2.57 89.12 +/- 0.5 72.03 +/- 13.79
shuffled shuffled 79.96 +/- 0.1 87.51 +/- 0.09 59.07 +/- 3.2 1.4 +/- 2.17 79.17 +/- 0.35 86.11 +/- 0.5 65.15 +/- 0.48

M1 natural natural 82.64 +/- 0.15 89.05 +/- 0.15 68.48 +/- 2.51 31.07 +/- 9.97 85.97 +/- 0.89 90.41 +/- 0.43 89.69 +/- 0.59
natural shuffled 76.67 +/- 0.34 87.21 +/- 0.17 65.8 +/- 6.11 23.06 +/- 5.3 81.84 +/- 0.43 83.94 +/- 0.33 62.86 +/- 0.19
shuffled natural 79.87 +/- 0.1 87.81 +/- 0.36 65.65 +/- 2.33 24.53 +/- 13.63 82.51 +/- 0.82 86.45 +/- 0.41 73.34 +/- 6.88
shuffled shuffled 79.75 +/- 0.0 88.21 +/- 0.24 64.88 +/- 6.32 22.43 +/- 10.79 82.65 +/- 0.42 86.25 +/- 0.4 63.15 +/- 2.2

MUG natural natural 71.93 +/- 0.21 66.94 +/- 9.21 53.7 +/- 1.01 0.92 +/- 2.06 70.57 +/- 0.66 83.17 +/- 1.5 58.59 +/- 0.33
natural shuffled 62.27 +/- 0.57 63.13 +/- 7.13 52.42 +/- 2.77 0.09 +/- 0.21 70.56 +/- 0.33 79.41 +/- 0.63 56.91 +/- 0.16
shuffled natural 67.62 +/- 0.3 66.49 +/- 0.49 52.17 +/- 1.26 0.0 +/- 0.0 70.37 +/- 0.93 79.93 +/- 1.01 57.59 +/- 0.29
shuffled shuffled 67.02 +/- 0.33 66.24 +/- 0.33 53.44 +/- 0.53 0.08 +/- 0.18 70.28 +/- 0.62 80.05 +/- 0.4 57.38 +/- 0.16

Table 5.9 Fine-tuning evaluation by varying different sources of word or-
der (with mean and std dev). We vary the word order contained in the
pre-trained model (MN,M1,MUG); in fine-tuning training set (natural and
shuffled); and in fine-tuning evaluation (natural and shuffled). Here, shuffled
corresponds to unigram shuffling of words in the input. In case of fine-tune
evaluation containing shuffled input, we evaluate on a sample of 100 uni-
gram permutations for each data point in the dev set of the corresponding
task.

5.5.3 Fine-tuning with randomized data

We perform additional experiments using the fine-tuned models from §5.4.1. Specif-

ically, we construct unigram randomized train and test sets (denoted as shuffled) of a

subset of tasks to evaluate whether models fine-tuned on natural or unnatural task

data (having natural or unnatural pre-training prior) are able to understand unnatural

data during testing. In the previous chapter (§4.4.1), we observed for MNLI there ex-

ists at least one permutation for many examples which can be predicted correctly by

the model. However, we also observed that every sentence can have many permuta-

tions which cannot be predicted correctly as well (§4.7). Similarly in this section we

construct 100 permutations for each example in the dev set for each task to capture the

overall accuracy.

Concretely, we useMN,M1 andMUG as our pre-trained representations (trained

with natural, unigram sentence shuffle and corpus shuffle data respectively) and eval-

uate the effect of training and evaluation on natural and unnatural data in Table 5.9.
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We observe that all models perform poorly on the shuffled test set, compared to natural

evaluation. However, interestingly, models have a slight advantage with a unigram

randomized prior (M1), with CoLA having the biggest performance gain. PAWS task

suffers the biggest drop in performance (from 94.49 to 62.22) but the lowest gain in

M1, confirming our conclusion from §5.4.1 that most of the word order information

necessary for PAWS is learned from the task itself.

Furthermore, training on shuffled data surprisingly leads to high performance on

natural data forMN in case of several tasks, the effect being weakest in case of CoLA

and PAWS. This suggests that for tasks other than CoLA and PAWS, spurious corre-

lations are leveraged by the models during fine-tuning (cf. Gururangan et al. 2018,

Poliak et al. 2018, Tsuchiya 2018). We also observe evidence of domain matching, where

models improve their performance on evaluation on shuffled data when the training

data source is changed from natural to shuffled (for MN, MNLI shuffled evaluation

improves from 68.11 to 79.96 just by changing the training corpus from natural to shuf-

fled). We observe this behavior consistently for all tasks with all pre-trained represen-

tations.

5.5.4 Dependency parsing using Second order Tree CRF Neural Dependency Parser

Model UD EWT PTB
UAS LAS UAS LAS

MN 90.92% 87.87% 95.42% 93.75%

M1 91.18% 88.19% 95.90% 94.35%
M2 91.11% 88.12% 95.74% 94.16%
M3 91.05% 87.94% 95.73% 94.14%
M4 90.88% 87.78% 95.77% 94.16%

MUG 90.47% 87.42% 95.81% 94.28%

Table 5.10 Unlabeled Attachment Score (UAS) on Dependency parsing
task on two datasets, UD EWT and PTB, using the Second order Tree CRF
Neural Dependency Parser Zhang et al. [2020]

We also conduct extensive experiments with Second Order Tree CRF Neural De-
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pendency parser from Zhang et al. [2020], using their provided codebase.10 We report

the results on UD EWT and PTB corpus in Table 5.10. Strangely enough, we find the

gap to be even smaller across the different randomization models, even for some cases

the performance on R1 improves over OR. We suspect this result is due to two rea-

sons: (a) Due to the presence of the complex Biaffine Dependency parser consisting of

multiple LSTMs and individual MLP heads for each dependency arc (left and right),

the majority of learning of the task is done by the parser itself; (b) Zhang et al. [2020]

downsample the BERT representation to 100 dimensions which is then combined with

the learned LSTM representations, thereby minimizing the impact of the pre-trained

representations. Our hypothesis is confirmed by the published results of Zhang et al.

[2020] on the Github repository, which shows a minimal gap between models with or

without BERT.

5.5.5 Perplexity analysis

We measure perplexity of various pre-trained randomization models on text that is

randomized using the same function F . Conventional language models compute the

perplexity of a sentence S by using past tokens (S<t = (w1,w2, . . . ,wt−1)) and the appli-

cation of chain rule (
∑|S|

t=1 logPLM(wt|St−1)). However, this formulation is not defined

for MLM, as a word is predicted using the entire sentence as a context. Following

Salazar et al. [2020], we measure Pseudo-Perplexity, i.e., given a sentence S, we com-

pute the log-probability of the missing word in S by iteratively masking out the specific

word, and computing the average log-probability per word in S:

PLL(S) =
1

|S|
∑
w∈S

logPMLM(w|S\w; θ) (5.2)

We bootstrap the PLL score of a test corpus T by drawing 100 samples five times

10https://github.com/yzhangcs/parser

https://github.com/yzhangcs/parser
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Figure 5.4 BPPL scores per model per test scenario.

with replacement. We also similarly compute the bootstrap perplexity following Salazar

et al.:

BPLLT = exp(− 1

N

∑
S∈W

PLL(S)), (5.3)

where W is the combined bootstrap sample containing N sentences drawn with

replacement from T . We compute this score on 6 pre-trained models, over four ran-

domization schemes on the bootstrapped sample W (i.e., we use the same n-gram ran-

domization function Fi). Thus, we obtain a 5x6 matrix of BPLL scores, which we plot

in Figure 5.4.

We observe that the pre-trained model MN has the lowest perplexity on the sen-

tences with natural word order. Pre-trained models with random word order exhibit

significantly higher perplexity than the normal word order sentences (top row). With

the exception ofM1, the models pre-trained on randomized data (M2,M3 andM4)
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all display the lowest perplexity for their respective n = 2,3,4 randomizations. These

results indicate that the models retain and detect the specific word order for which

they were trained.

5.5.6 The usefulness of word order
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Figure 5.5 Rissanen Data Analysis [Perez et al., 2021b] on the GLUE bench-
mark and PAWS datasets. The lower minimum description length (MDL,
measured in kilobits), the better the learning ability of the model.

The results in §5.4.1 suggest that, with proper fine-tuning, an unnaturally trained

model can reach a level of performance comparable to that of a naturally pre-trained

model. However, we want to understand whether natural word order pre-training

offers any advantage during the early stages of fine-tuning. Towards that end, we

turn to compute the Minimum Description Length [MDL; Rissanen, 1984]. MDL is

designed to characterize the complexity of data as the length of the shortest program

required to generate it. Thus, the length of the minimum description (in bits) should

provide a fair estimate of how much word order is useful for fine-tuning in a few-shot

setting. Specifically, we leverage the Rissanen Data Analysis (RDA) framework from
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Perez et al. [2021b] to evaluate the MDL of pre-trained models on our set of down-

stream tasks. Under mild assumptions, if a pre-trained model θ1 is useful for solving a

particular task T over θ2, then the MDL in bits obtained by using θ1 should be shorter

than θ2. We follow the experimental setup of Perez et al. to compute the MDL on

several tasks using θ = {MN,M1,M2,M3,M4}, over three seeds and on three epochs

of training. Concretely, RDA involves sampling 9 blocks of data from the dataset at

random, where the size of each block is increased monotonically, training on 8 blocks

while evaluating the model’s loss (or codelength) on the ninth. The minimum number

of data samples in the smallest block is set at 64, while the largest number of data

samples used in the last block is 10,000.

We observe that the value of MDL is consistently lowest for naturally pre-trained

data (Figure 5.5). For purportedly word order reliant datasets such as RTE, CoLA and

PAWS, the gap between the MDL scores among the natural and unnatural models is

high. PAWS, specifically, has the largest advantage in the beginning of optimization,

however with more fine-tuning, the model re-learns correct word order (§5.4.1). The

present analyses, when taken in conjunction with our main results in §5.4.1, suggest

that fine-tuning on large training datasets with complex classifiers in the pursuit of

state-of-the-art results has mostly nullified the impact of word order in the pre-trained

representations. Few shot [Bansal et al., 2020] and few sample [Zhang et al., 2021]

learning and evaluation could potentially require more word order signal, thereby en-

couraging the model to leverage its own learned syntax better.

5.5.7 At what point do models learn word order during pre-training?

Results from §5.4.1 beg the question: when, if at all, during pre-training does a model

learn the natural word order? We aim to answer that question by comparing down-

stream task performance of RoBERTa base on intermediate checkpoints with that of

the random word order pretrained models. The idea is to find the point during pre-
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Figure 5.6 Comparison among GLUE task performance from different
steps in pre-training of RoBERTa on BookWiki Corpus.

training on natural corpus at which the model exceeds the task performance of the

random pre-training model.

Performance on all tasks (Figure 5.6) increases rapidly during the first 20-25 epochs

of pre-training. For some tasks, the word order information only helps after 30-50 pre-

training epochs.
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Model UD EWT PTB
MLP Linear MLP Linear

MN 93.74 +/- 0.15 88.82 +/- 0.42 97.07 +/- 0.38 93.1 +/- 0.65

M1 88.60 +/- 3.43 80.76 +/- 3.38 95.33 +/- 0.37 87.83 +/- 1.86
M2 93.39 +/- 0.45 87.58 +/- 1.06 96.96 +/- 0.15 91.80 +/- 0.50
M3 92.89 +/- 0.65 86.78 +/- 1.32 97.03 +/- 0.13 91.70 +/- 0.70
M4 92.83 +/- 0.61 87.23 +/- 0.77 96.96 +/- 0.12 92.08 +/- 0.39

MUG 89.10 +/- 0.21 79.75 +/- 0.5 94.12 +/- 0.01 84.15 +/- 0.51

Table 5.11 Accuracy on the part-of-speech labelling task (POS) on two
datasets, UD EWT and PTB, using the Pareto Probing framework Pimentel
et al. [2020b].

Model UD EWT PTB
MLP Linear MLP Linear

MN 89.63 +/- 0.60 84.35 +/- 0.78 93.96 +/- 0.63 88.35 +/- 1.00

M1 83.55 +/- 3.31 75.26 +/- 3.08 91.10 +/- 0.38 82.34 +/- 1.37
M2 88.57 +/- 0.68 82.05 +/- 1.10 93.27 +/- 0.26 86.88 +/- 0.87
M3 88.69 +/- 1.09 82.37 +/- 1.26 93.46 +/- 0.29 87.12 +/- 0.72
M4 88.66 +/- 0.76 82.58 +/- 1.04 93.49 +/- 0.33 87.30 +/- 0.79

MUG 84.93 +/- 0.34 76.30 +/- 0.52 89.98 +/- 0.43 78.59 +/- 0.68

Table 5.12 Accuracy on the dependency arc labelling task (DAL) on two
datasets (with mean and std dev), UD EWT and PTB, using the Pareto Prob-
ing framework Pimentel et al. [2020a].

5.5.8 More results from Syntactic Probes

We computed the Pareto Hypervolume on the dependency parsing task [Pimentel

et al., 2020a]. The Pareto Hypervolume is computed as the Area Under Curve (AUC)

score over all hyperparameter runs, where the models are arranged based on their

complexity. We observe minimal differences in the Pareto Hypervolumes (Table 5.13)

amongMN and the randomization models for both datasets.

We also investigated two “easy” tasks, Part-of-Speech tagging (POS) and Depen-

dency Arc Labeling (DAL) from the Pareto Probing framework. For POS (Table 5.11)

and DAL (Table 5.12), since these tasks are simpler than DEP, the gap betweenMN and
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Model UD EWT PTB
MN 0.528 +/- 0.01 0.682 +/- 0.01

M1 0.489 +/- 0.03 0.648 +/- 0.01
M2 0.529 +/- 0.00 0.681 +/- 0.01
M3 0.528 +/- 0.02 0.689 +/- 0.01
M4 0.525 +/- 0.00 0.683 +/- 0.01

MUG 0.510 +/- 0.01 0.640 +/- 0.05

Table 5.13 Pareto Hypervolume of dependency parsing task (DEP) on two
datasets (with mean and std dev), UD EWT and PTB, using the Pareto Prob-
ing framework Pimentel et al. [2020b].

unnaturally pre-trained models reduces even more drastically. The gap betweenMN

andM1 reduces to just 3.5 points on average for PTB in both POS and DAL.

5.5.9 Non parametric probes

Probability difference. In the original formulation [Goldberg, 2019, Wolf, 2019a], the

effectiveness of each stimulus is determined by the accuracy metric, computed as the

number of times the probability of the correct focus word is greater than that of the

incorrect word (P (good) > P (bad)). We observed that this metric might not be reliable

per se, since the probabilities may themselves be extremely low for all tokens, even

when focus word probability decreases drastically fromMN toMUG. Thus, we also

report the mean difference of probabilities, ( 1
N

∑N
i P (goodi)− P (badi)), scaled up by

a factor of 100 for ease of observation, in Figure 5.9, Figure 5.8 and Figure 5.7. We

observe the highest difference between probabilities of the correct and incorrect focus

words for the model pretrained on the natural word order (MN). Moreover, with each

step fromM1 toM4, the difference between probablities of correct and incorrect focus

words increases, albeit marginally, showing that pre-trained models with fewer n-gram

words perturbed capture more word order information. MUG, the model with the

distributional prior ablated, performs the worst, as expected.
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model MN MUG M1 M2 M3 M4
condition

1 93.45 (0.89) [25.04] 58.87 (0.41) [0.0] 59.96 (1.58) [0.08] 63.63 (0.6) [1.25] 64.7 (1.44) [2.79] 70.47 (1.9) [4.01]
2 92.8 (1.22) [23.8] 63.03 (1.35) [0.01] 58.22 (1.5) [0.09] 61.15 (2.07) [0.82] 63.84 (2.41) [2.09] 64.7 (1.92) [3.07]
3 87.71 (1.34) [22.03] 64.06 (3.52) [0.0] 56.69 (2.98) [0.03] 56.83 (3.63) [0.85] 61.1 (0.32) [2.02] 63.0 (3.36) [2.35]
4 92.67 (0.52) [22.16] 76.33 (1.38) [0.0] 62.33 (7.61) [0.08] 63.17 (9.09) [1.12] 69.42 (1.77) [2.1] 67.67 (7.02) [3.43]

Table 5.14 Linzen et al. [2016] stimuli results in raw accuracy. Values
in parenthesis reflect the standard deviation over different seeds of pre-
training. Values in square brackets indicate the mean probability difference
among correct and incorrect words.

model MN MUG M1 M2 M3 M4
condition

0 79.42 (5.5) [2.43] 47.83 (3.76) [-0.0] 53.67 (1.38) [0.03] 58.75 (6.38) [0.05] 63.58 (4.11) [0.14] 63.75 (3.28) [0.17]
1 72.83 (4.07) [2.55] 44.5 (0.5) [0.0] 70.83 (5.8) [0.02] 64.83 (1.76) [-0.09] 71.67 (6.71) [0.21] 71.5 (2.65) [0.61]
2 55.56 (0.0) [0.92] 88.89 (11.11) [0.0] 81.48 (12.83) [0.03] 51.85 (6.42) [0.04] 62.96 (6.42) [0.38] 74.07 (16.97) [0.61]

Table 5.15 Gulordava et al. [2018b] stimuli results in raw accuracy.Values
in parenthesis reflect the standard deviation over different seeds of pre-
training. Values in square brackets indicate the mean probability difference
among correct and incorrect words.

Accuracy comparison. We provide the accuracy as measured by Goldberg [2019], Wolf

[2019a] on the probing stimuli in Table 5.14, Table 5.15 and Table 5.16. We also highlight

the difference in probability (P (good)−P (bad)) in the table to provide a more accurate

picture. All experiments were conducted on three pre-trained seeds for each model in

our set of models. However, the low token probabilities inMUG tend to present un-

reliable scores. For example, in the case of Gulordava et al. [2018a] stimuli, unnatural

models provide better scores compared to the natural model. We also observe for the

Linzen et al. [2016] stimuli that the results on model condition 4 (number of attractors)

are surprisingly high forMUG whereas the individual token probabilities are lowest.

We believe these inconsistencies stem from extremely low token probabilities them-

selves.

Balancing datasets on inflection by upsampling. The stimuli datasets of Linzen et al.

[2016] and Gulordava et al. [2018a] turned out to be heavily skewed towards words
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where singular was the correct inflection (as opposed to plural). This dataset imbal-

ance caused the weak models (such as MUG) to have surprisingly high scores - the

weak models were consistently providing higher probability for the singular inflection

(Table 5.17). We upsample for both datasets, balancing the frequency of correct singu-

lar and plural inflections. We compute the upsampling number to the next multiple of

100 of the count of original singular inflections. For example, in condition 4 of Linzen

et al. [2016] dataset, we upsample both S and P to 300 rows each. This type of balancing

via upsampling largely alleviated the inconsistencies we observed, and might prove to

be useful when evaluating other models on these datasets in future.

Model MN MUG M1 M2 M3 M4
condition

AOR 89.98 (1.96) [29.16] 50.0 (0.01) [0.0] 60.17 (1.61) [1.7] 66.61 (7.1) [3.87] 63.57 (2.39) [2.45] 61.26 (4.91) [1.16]
AOR-T 77.4 (7.74) [13.84] 50.0 (0.0) [0.0] 78.88 (0.64) [0.15] 52.17 (2.14) [0.43] 48.85 (3.8) [0.25] 57.06 (3.49) [0.55]
APP 89.94 (4.16) [27.06] 50.01 (0.02) [-0.0] 70.34 (1.9) [0.68] 53.61 (3.3) [0.2] 53.03 (1.75) [0.79] 60.6 (4.41) [0.91]
ARC 85.06 (5.92) [1.2] 50.05 (0.08) [-0.0] 62.39 (1.91) [0.11] 74.57 (5.99) [0.07] 67.55 (3.84) [0.07] 62.88 (3.45) [0.03]
ASR 87.19 (3.58) [26.18] 50.0 (0.0) [-0.0] 78.55 (10.01) [1.91] 81.73 (5.1) [2.91] 62.8 (0.35) [1.38] 67.23 (6.82) [1.48]
IOR 89.83 (3.33) [0.4] 50.55 (0.95) [-0.0] 56.28 (2.66) [0.01] 58.96 (4.28) [0.04] 70.49 (2.2) [0.04] 62.82 (8.51) [0.08]
IOR-T 74.05 (8.26) [0.2] 50.61 (1.05) [-0.0] 52.63 (2.07) [0.01] 57.35 (4.88) [0.01] 61.85 (4.75) [0.01] 55.16 (6.59) [0.03]
ISC 85.87 (9.6) [5.27] 50.0 (0.0) [0.0] 67.85 (2.62) [0.07] 82.66 (9.43) [0.0] 77.69 (4.51) [0.31] 68.65 (5.71) [0.06]
LVC 93.0 (0.75) [26.58] 49.92 (0.14) [-0.0] 70.42 (6.79) [0.1] 87.5 (7.26) [1.44] 85.42 (3.84) [0.63] 81.08 (5.13) [0.66]
SCM 88.6 (3.49) [5.72] 50.0 (0.0) [0.02] 63.73 (7.94) [0.12] 82.12 (0.92) [0.17] 86.44 (3.67) [2.62] 80.27 (2.46) [0.26]
SRX 91.0 (6.07) [2.72] 50.0 (0.0) [0.0] 88.0 (10.11) [0.1] 92.25 (10.27) [0.32] 94.25 (5.02) [0.02] 91.0 (6.5) [3.07]
SVA 95.33 (7.23) [31.35] 50.0 (0.0) [0.02] 86.0 (5.29) [0.57] 85.17 (12.87) [3.17] 94.67 (5.25) [6.15] 88.83 (9.57) [30.57]
SVC 97.54 (1.58) [19.27] 50.0 (0.0) [-0.0] 83.58 (4.58) [0.84] 83.71 (8.78) [1.17] 93.29 (7.4) [6.39] 81.04 (3.66) [11.07]

Table 5.16 Marvin and Linzen [2018] stimuli results in raw accuracy. Val-
ues in parenthesis reflect the standard deviation over different seeds of pre-
training. Values in square brackets indicate the mean probability difference
among correct and incorrect words. Abbreviations: Simple Verb Agreement
(SVA), In a sentential complement (SCM), Short VP Coordination (SVC),
Long VP Coordination (LVC), Across a prepositional phrase (APP), Across a
subject relative clause (ASR), Across an object relative clause (AOR), Across
an object relative (no that) (AOR-T), In an object relative clause (IOR), In an
object relative clause (no that) (IOR-T), Simple Reflexive (SRX), In a senten-
tial complement (ISC), Across a relative clause (ARC), Simple NPI (SNP).
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Model MN MUG M1 M2 M3 M4 S/P
condition

1 94.04 (0.8) 62.64 (0.5) 62.18 (1.33) 64.91 (0.14) 65.35 (1.78) 70.88 (1.88) 14011 / 10112
2 93.28 (0.94) 71.24 (0.85) 63.03 (1.69) 62.92 (2.57) 65.25 (3.13) 65.61 (2.35) 3120 / 1312
3 89.1 (0.58) 74.05 (1.85) 62.94 (3.13) 59.18 (3.32) 63.54 (1.72) 63.05 (2.0) 733 / 215
4 90.53 (0.9) 80.03 (0.59) 63.16 (4.83) 63.94 (6.92) 66.41 (3.17) 66.28 (4.64) 206 / 51

Table 5.17 Linzen et al. [2016] stimuli results in raw accuracy on original,
unbalanced data. Values in parenthesis reflect the standard deviation. S/P
reflects the count of correct singular and plural focus words.

5.6 Related Work

5.6.1 Sensitivity to word order in NLU

Information order has been a topic of research in computational linguistics since Barzi-

lay and Lee [2004] introduced the task of ranking sentence orders as an evaluation for

language generation quality, an approach which was subsequently also used to evalu-

ate readability and dialogue coherence [Barzilay and Lapata, 2008, Laban et al., 2021].

More recently, several research groups have investigated information order for words

rather than sentences as an evaluation of model humanlikeness. In our previous chap-

ter (Chapter §4), we investigate the task of natural language inference (NLI) and find

high accuracy on permuted examples for different Transformer and pre-Transformer

era models, across English and Chinese datasets [Hu et al., 2020a]. Gupta et al. [2021]

use targeted permutations on RoBERTa-based models and show word order insensi-

tivity across natural language inference (MNLI), paraphrase detection (QQP) and sen-

timent analysis tasks (SST-2). Pham et al. [2020] show insensitivity on a larger set

of tasks, including the entire GLUE benchmark, and find that certain tasks in GLUE,

such as CoLA and RTE are more sensitive to permutations than others. Ettinger [2020]

recently observed that BERT accuracy decreases for some word order perturbed exam-

ples, but not for others. In all these prior works, models were given access to normal
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OR R1 R2 R3 R4

1 They are commonly
known as daturas, but
also known as devil’s
trumpets, not to be
confused with angel’s
trumpets, its closely
related genus "Brugman-
sia".

be They angel’s also
but trumpets, genus
related devil’s as com-
monly closely known
its daturas, trumpets, as
"Brugmansia". confused
with known are to not

as devil’s They genus not
to trumpets, closely re-
lated "Brugmansia". are
commonly trumpets, its
also known known as
be confused daturas, but
with angel’s

"Brugmansia". related
They are commonly
trumpets, its closely
as daturas, but known
genus also known as
trumpets, confused with
angel’s devil’s not to be

its closely related genus
They are commonly
known trumpets, as
trumpets, daturas, but
also known as "Brugman-
sia". not to be confused
with angel’s devil’s

2 They are also sometimes
called moonflowers, jim-
sonweed, devil’s weed,
hell’s bells, thorn-apple,
and many more.

are devil’s bells, called
weed, hell’s thorn-apple,
and many They also
more. moonflowers,
jimsonweed, sometimes

more. They are hell’s
bells, also sometimes and
many called moonflow-
ers, jimsonweed, devil’s
weed, thorn-apple,

jimsonweed, devil’s
weed, They are also
thorn-apple, and many
bells, more. hell’s some-
times called moonflow-
ers,

moonflowers, They are
also sometimes bells,
thorn-apple, and many
more. called jimsonweed,
devil’s weed, hell’s

3 Its precise and natural
distribution is uncertain,
owing to its extensive cul-
tivation and naturaliza-
tion throughout the tem-
perate and tropical re-
gions of the globe.

throughout owing precise
extensive temperate and
naturalization and trop-
ical of to natural is its
Its distribution cultiva-
tion the globe. uncertain,
regions the and

and natural distribution
is tropical to its and natu-
ralization throughout the
the temperate and globe.
Its precise uncertain, ow-
ing extensive cultivation
regions of

uncertain, owing to Its
precise and its extensive
cultivation of globe. nat-
ural distribution is the the
and tropical regions and
naturalization through-
out temperate

globe. Its precise and
natural cultivation dis-
tribution the is uncer-
tain, owing to its exten-
sive and naturalization
throughout the temperate
and tropical regions of

4 Its distribution within
the Americas and North
Africa, however, is most
likely restricted to the
United States, Mexico
and Southern Canada
in North America, and
Tunisia in Africa where
the highest species diver-
sity occurs.

distribution Mexico oc-
curs. likely diversity
North however, species
most the Tunisia where
in and and North Canada
Southern America, high-
est Africa United the and
in Americas Its within
States, is to the restricted
Africa,

and Tunisia the Americas
distribution within Mex-
ico and is most United
States, Africa, however,
Africa where in North Its
and North in Southern
Canada America, the to
the likely restricted oc-
curs. highest species di-
versity

likely Its highest species
diversity United States,
Mexico restricted to the
Africa where the occurs.
distribution within the
and Tunisia in however,
is most Americas and
Southern Canada and
North Africa, in North
America,

Tunisia occurs. Its distri-
bution within the Africa
where the highest in
restricted to the United
Canada in North Amer-
ica, most North Africa,
however, is and Americas
likely diversity States,
Mexico and Southern
species and

5 All species of "Datura"
are poisonous, especially
their seeds and flowers.

seeds and species of poi-
sonous, "Datura" their are
All flowers. especially

"Datura" are especially
their flowers. seeds and
of All species poisonous,

especially their seeds
flowers. "Datura" are
poisonous, All species of
and

flowers. poisonous,
species of "Datura" are
All especially their seeds
and

6 Some South American
plants formerly thought
of as "Datura" are now
treated as belonging to
the distinct genus "Brug-
mansia" ("Brugmansia"
differs from "Datura" in
that it is woody, making
shrubs or small trees, and
it has pendulous flowers,
rather than erect ones).

and "Datura" treated
from than flowers, it
small belonging woody,
thought as ones). South
differs Some "Brugman-
sia" American as are
in the rather pendulous
distinct making now erect
"Datura" to ("Brugman-
sia" of formerly trees, or
is it that plants genus has
shrubs

"Brugmansia" ("Brug-
mansia" than erect pen-
dulous genus and ones).
is woody, small trees,
of as the distinct flow-
ers, rather Some South
differs from American
plants treated as formerly
thought belonging to
"Datura" in making that
it "Datura" are it has now
shrubs or

woody, small trees, and
has pendulous flowers,
as belonging to Some
making shrubs or as
rather than erect "Datura"
are now "Brugmansia"
("Brugmansia" differs
the distinct genus from
"Datura" in formerly
thought of it treated that
it is ones). South Ameri-
can plants

belonging to the dis-
tinct has making Some
("Brugmansia" differs
from "Datura" in are now
treated as genus pen-
dulous shrubs flowers,
rather than erect or ones).
"Brugmansia" that it is
woody, South American
plants formerly thought
of as "Datura" small trees,
and it

7 Other related taxa include taxa Other include related include Other related taxa include Other related taxa Other related taxa include
8 "Hyoscyamus niger",

"Atropa belladonna",
"Mandragora offici-
narum", Physalis, and
many more.

and many niger", offic-
inarum", belladonna",
"Mandragora "Atropa
"Hyoscyamus more.
Physalis,

belladonna", "Man-
dragora "Hyoscyamus
niger", many Physalis,
and more. officinarum",
"Atropa

more. Physalis, and
many belladonna", "Man-
dragora officinarum",
"Hyoscyamus niger",
"Atropa

niger", more. bel-
ladonna", "Mandragora
officinarum", Physalis,
"Atropa many and
"Hyoscyamus

9 The name "Datura" is
taken from Sanskrit ’
’thorn-apple’, ultimately
from Sanskrit ’ ’white
thorn-apple’ (referring to
"Datura metel" of Asia).

of Asia). taken from name
The "Datura" ’ is to ’thorn-
apple’, Sanskrit ’ San-
skrit metel" ’white (refer-
ring from "Datura thorn-
apple’ ultimately

"Datura" is taken from to
’ ’thorn-apple’, Sanskrit ’
’white of thorn-apple’ (re-
ferring Asia). The name
Sanskrit ultimately from
"Datura metel"

Sanskrit ’ The name
"Datura" ’thorn-apple’,
ultimately from metel"
Asia). is taken from
of ’white (referring to
"Datura Sanskrit ’ thorn-
apple’

Asia). The name "Datura"
is from taken of from San-
skrit ’ ’thorn-apple’, ulti-
mately Sanskrit ’ ’white
thorn-apple’ (referring to
"Datura metel"

10 In the Ayurvedic text
Sushruta different species
of Datura are also re-
ferred to as ’ and ’.

the of also Sushruta
Datura are referred to
as In Ayurvedic and
different species ’ text ’.

species of referred to are
also Datura Sushruta dif-
ferent and as ’ Ayurvedic
text In the ’.

as ’ and In the Ayurvedic
also referred to species of
Datura are text Sushruta
different ’.

different In the Ayurvedic
text also referred to as
and Sushruta ’ species of
Datura are ’.

Table 5.18 First 10 lines from the BookWiki corpus, and their respective
n-gram permutations.
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Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

MN 2e-05 2e-05 1e-05 2e-05 1e-05 1e-05 1e-05 2e-05
M1 2e-05 1e-05 1e-05 1e-05 3e-05 1e-05 2e-05 2e-05
M2 2e-05 2e-05 1e-05 1e-05 2e-05 1e-05 1e-05 3e-05
M3 3e-05 1e-05 2e-05 2e-05 3e-05 1e-05 1e-05 2e-05
M4 3e-05 1e-05 2e-05 2e-05 2e-05 1e-05 1e-05 2e-05
M512 1e-05 3e-05 2e-05 2e-05 3e-05 2e-05 3e-05 2e-05
MUG 2e-05 1e-05 3e-05 1e-05 3e-05 3e-05 3e-05 2e-05
MUF 2e-05 1e-05 3e-05 2e-05 3e-05 3e-05 3e-05 1e-05
MRI 1e-05 1e-05 3e-05 1e-05 1e-05 1e-05 2e-05 1e-05
MNP 1e-05 3e-05 2e-05 1e-05 1e-05 1e-05 1e-05 1e-05

Table 5.19 Fine-tuning hyperparam Learning rate of each model for each
task in GLUE and PAWS

Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

MN 16 16 32 16 16 32 32 16
M1 32 32 16 32 32 16 32 16
M2 32 16 32 16 32 32 16 32
M3 32 32 16 32 32 16 32 32
M4 32 16 32 16 32 32 32 32
M512 32 16 16 32 32 16 16 16
MUG 16 16 16 16 32 16 16 32
MUF 16 32 16 16 32 16 16 16
MRI 16 16 32 16 16 16 32 16
MNP 16 32 16 16 32 16 16 16

Table 5.20 Finetuning hyperparam batch size of each model for each task
in GLUE and PAWS

word order at (pre-)training time, but not at fine-tuning or test time. It was not clear

whether the model acquires enough information about word order during the fine-

tuning step, or whether it is ingrained in the pre-trained model. In this work, we take

these investigations a step further: we show that the word order information needed

for downstream tasks does not need to be provided to the model during pre-training.

Since models can learn whatever word order information they do need largely from

fine-tuning alone, this likely suggests that our downstream tasks don’t actually require

much complex word order information in the first place (cf., Glavaš and Vulić 2021).
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5.6.2 Randomization ablations

Random controls have been explored in a variety of prior work. Wieting and Kiela

[2019] show that random sentence encoders are surprisingly powerful baselines. Gau-

thier and Levy [2019] use random sentence reordering to label some tasks as “syntax-

light” making them more easily decodeable from images of the brain. Shen et al. [2021]

show that entire layers of MLM transformers can be randomly initialized and kept

frozen throughout training without detrimental effect and that those layers perform

better on some probing tasks than their frozen counterparts. Models have been found

to be surprisingly robust to randomizing or cutting syntactic tree structures they were

hoped to rely on Scheible and Schütze [2013], Williams et al. [2018b], and randomly

permuting attention weights often induces only minimal changes in output Jain and

Wallace [2019]. In computer vision, it is well known that certain architectures consti-

tute good “deep image priors” for fine-tuning Ulyanov et al. [2018] or pruning Frankle

et al. [2020], and that even randomly wired networks can perform well at image recog-

nition Xie et al. [2019]. Here, we explore randomizing the data, rather than the model,

to assess whether certain claims about which phenomena the model has learned are

established in fact.

5.6.3 Synthetic pre-training

Kataoka et al. [2020] found that pre-training on synthetically generated fractals for im-

age classification is a very strong prior for subsequent fine-tuning on real image data.

In language modeling, Papadimitriou and Jurafsky [2020] train LSTMs [Hochreiter and

Schmidhuber, 1997] on non-linguistic data with latent structure such as MIDI music or

Java code provides better test performance on downstream tasks than a randomly ini-

tialized model. They observe that even when there is no vocabulary overlap among

source and target languages, LSTM language models leverage the latent hierarchical

structure of the input to obtain better performance than a random, Zipfian corpus of
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the same vocabulary.

5.6.4 On the utility of probing tasks

Many recent papers provide compelling evidence that BERT contains a surprising

amount of syntax, semantics, and world knowledge [Giulianelli et al., 2018, Rogers

et al., 2020, Lakretz et al., 2019, Jumelet et al., 2019, 2021]. Many of these works in-

volve diagnostic classifiers [Hupkes et al., 2018] or parametric probes, i.e. a function

atop learned representations that is optimized to find linguistic information. How well

the probe learns a given signal can be seen as a proxy for linguistic knowledge encoded

in the representations. However, the community is divided on many aspects of probing

[Belinkov, 2021] including how complex probes should be. Many prefer simple linear

probes over the complex ones [Alain and Bengio, 2017, Hewitt and Manning, 2019,

Hall Maudslay et al., 2020]. However, complex probes with strong representational ca-

pacity are able to extract the most information from representations [Voita and Titov,

2020, Pimentel et al., 2020b, Hall Maudslay et al., 2020]. In this chapter, we follow Pi-

mentel et al. [2020a] and use both simple (linear) and complex (non-linear) models, as

well as “complex” tasks (dependency parsing). As an alternative to parametric probes,

stimulus-based non-parametric probing [Linzen et al., 2016, Jumelet and Hupkes, 2018,

Marvin and Linzen, 2018, Gulordava et al., 2018a, Warstadt et al., 2019a, Ettinger, 2020,

Lakretz et al., 2021, Warstadt et al., 2020b,c] has been used to show that even without a

learned probe, BERT can predict syntactic properties with high confidence [Goldberg,

2019, Wolf, 2019a]. We use this class of non-parametric probes to investigate RoBERTa’s

ability to learn word order during pre-training.
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5.7 Discussion

The assumption that word order information is crucial for any classical NLP pipeline

(especially for English) is deeply ingrained in our understanding of syntax itself [Chom-

sky, 1957]: without order, many linguistic constructs are undefined. (e.g. dependency

or constituency parses would no longer be syntactic trees, what would sentences be

but mere lists of words). Our fine-tuning results in §5.4.1 and parametric probing re-

sults in §5.4.2, however, suggests that MLMs do not need to rely much on word order

to achieve high accuracy, bringing into question previous claims that they learn a “clas-

sical NLP pipeline.”

One might ask, though, whether an NLP pipeline would really need natural word

order at all: can transformers not simply learn what the correct word order is from

unordered text? First, the lower non-parametric probing accuracies of the randomized

models indicate that they are not able to accurately reconstruct the original word or-

der (see also §5.5.1). But even if models were able to “unshuffle” the words under our

unnatural pre-training set up, they would only be doing so based on distributional

information. Models would then abductively learn only the most likely word order.

While models might infer a distribution over possible orders and use that informa-

tion to structure their representations [Papadimitriou et al., 2021], syntax is not about

possible or even the most likely orders: it is about the actual order. That is, even if one

concludes in the end that Transformers are able to perform word order reconstruction

based on distributional information, and recover almost all downstream performance

based solely on that, we ought to be a lot more careful when making claims about what

our evaluation datasets are telling us.

Thus, our results seem to suggest that we may need to revisit what we mean by

“linguistic structure,” and perhaps subsequently acknowledge that we may not need

human-like linguistic abilities for most NLP tasks. Or, our results can be interpreted as

evidence that we need to develop more challenging and more comprehensive evalua-
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tions, if we genuinely want to measure linguistic abilities, however those are defined,

in NLP models.

To summarize, in this chapter, we revisited the hypothesis that masked language

modelling’s impressive performance can be explained in part by its ability to learn

classical NLP pipelines. We investigated targeted pre-training on sentences with var-

ious degrees of randomization in their word order, and observed overwhelmingly

that MLM’s success is most likely not due to its ability to discover syntactic and se-

mantic mechanisms necessary for a traditional language processing pipeline during

pre-training. Instead, our experiments suggest that MLM’s success can largely be ex-

plained by it having learned higher-order distributional statistics that make for a use-

ful prior for subsequent fine-tuning. These results should hopefully encourage the

development of better, more challenging tasks that require sophisticated reasoning,

and harder probes to narrow down what exact linguistic information is present in the

representations learned by our models.
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N 1 2 3 4 UG

(P(good) - P(bad)) * 100

LVC

AOR

AOR-T

IOR-T

IOR

APP

ISC

ARC

SCM

SVA

SNP

SRX

ASR

SVC

26.58 0.10 1.44 0.63 0.66 -0.00

29.16 1.70 3.87 2.45 1.16 0.00

13.84 0.15 0.43 0.25 0.55 -0.00

0.20 0.01 0.01 0.01 0.03 -0.00

0.40 0.01 0.04 0.04 0.08 -0.00

27.06 0.68 0.20 0.79 0.91 -0.00

5.27 0.07 0.00 0.31 0.06 0.00

1.20 0.11 0.07 0.07 0.03 -0.00

5.72 0.12 0.17 2.62 0.26 0.02

31.35 0.57 3.17 6.15 30.57 0.02

0.23 -0.00 0.00 1.73 0.08 -0.00

2.72 0.10 0.32 0.02 3.07 0.00

26.18 1.91 2.91 1.38 1.48 -0.00

19.27 0.84 1.17 6.39 11.07 0.00

Figure 5.7 The difference in word probabilities for stimuli in Marvin and
Linzen [2018]: Simple Verb Agreement (SVA), In a sentential complement
(SCM), Short VP Coordination (SVC), Long VP Coordination (LVC), Across
a prepositional phrase (APP), Across a subject relative clause (ASR), Across
an object relative clause (AOR), Across an object relative (no that) (AOR-
T), In an object relative clause (IOR), In an object relative clause (no that)
(IOR-T), Simple Reflexive (SRX), In a sentential complement (ISC), Across a
relative clause (ARC), Simple NPI (SNP).
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N 1 2 3 4 UG

(P(good) - P(bad)) * 100

1

2

3

4

25.01 0.08 1.25 2.79 4.00 0.00

23.74 0.09 0.81 2.08 3.06 0.02

21.96 0.03 0.84 2.01 2.34 0.00

22.16 0.08 1.12 2.10 3.43 0.00

Figure 5.8 Linzen et al. [2016]

N 1 2 3 4 UG

(P(good) - P(bad)) * 100

0

1

2

2.41 0.03 0.05 0.14 0.17 -0.00

2.55 0.02 -0.09 0.21 0.61 0.00

0.92 0.03 0.04 0.38 0.61 0.00

Figure 5.9 Gulordava et al. [2018a]
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Chapter 6

Measuring systematic generalization by

exploiting absolute positions

Recently, Transformer [Vaswani et al., 2017] language models (TLMs) have been widely

used for natural language applications. Such models incorporate positional encodings:

vectors encoding information about the order of words in context. Many models, such

as RoBERTa [Liu et al., 2019b], GPT3 [Brown et al., 2020] and OPT [Zhang et al., 2022b],

utilize absolute position embeddings (APEs) that directly encode absolute (linear) word

order. APEs appear to contribute to the performance of such models.

However, in our previous chapters (§4 and §5), we observe models lack a sense of

relative positions, as they become (in)sensitive to ablative word scrambles. Further-

more, recent studies have shown that removing APE’s seem to work optimally [Haviv

et al., 2022]. Thus, what precisely APEs contribute remains unclear.

It is conceivable that APEs may enable the model to handle the relative distances

between words. If models were somehow learning relative position information de-

spite using absolute positional embeddings, we would expect sentence encodings to be

the same in most cases, regardless of where they appear in the context window. For ex-

ample, the meaning of “smoking kills” should be constant in “Kim said smoking kills”
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(positions 2–3) and “It was commonly believed by most adult Americans in the 90s

that smoking kills” (positions 13–14), despite the fact that these words appear in differ-

ent absolute positions. Given this, our central question is: do APEs enable the model

to learn the relative distances between the words in a sentence?

Prior work has attempted to explore the consequences of APEs using probing meth-

ods [Wang et al., 2021]. APEs have been found to not capture the meaning of absolute

or relative positions [Wang and Chen, 2020]. APEs have also been found to bias model

output with positional artefacts [Luo et al., 2021], leading to better performance on to-

ken to position de-correlation [Ke et al., 2021]. Haviv et al. [2022] even find that causal

TLMs perform adequately even without an explicit APEs. However, a systematic study

on relativity of positional encodings is still needed.

👍Who could Thomas observe without distracting Nathan ? 

Who could Thomas observe without distracting Nathan ? 

Zero starting position

Non-zero strating position

Figure 6.1 Transformer models with absolute positional embeddings have
different representations for sentences starting from non-zero positions.

To better understand the relativity of absolute position embeddings, we first need

to ascertain the robustness of relative position understanding for a given input. TLMs

are typically trained in a batch containing multiple sentences, with a limited sequence

window size, which is typically much larger than an average sentence. We hypothe-
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size that a systematic model should encode the same sentence equally throughout this

context window. However, evaluating the encoding of a sentence starting from any po-

sition in this window in isolation is hard, as the representation of the sentence would

depend on the prior context Misra et al. [2020], Kassner and Schütze [2020].

In this chapter, we talk about our work Sinha et al. [2022], where we subject models

from several different architectures and sizes to phase shifting. In this paradigm, the

sentences exposed to the model are provided contiguous position identifiers starting

from a non-zero position (Figure 6.1). Such inspection allows us to gauge the model’s

sentence encodings on different positions, emulating sub-window sentence represen-

tation, while factoring out the influence of prior context. We investigate several zero

shot, few shot and full shot tasks by shifting the start positions of the sentences. We

observe the following:

• TLMs display different sub-window sentence representation capabilities, result-

ing in decreased zero shot task performance and variability in sentence perplexi-

ties.

• Autoregressive models, including the recently published OPT Zhang et al. [2022b],

show erratic zero and few-shot performance on sub-window representations,

highlighting the brittleness of in-context learning evaluation.

• Masked Language Models (MLMs) encode sentences in non-standard positions

better than their autoregressive counterparts.

• During fine-tuning models suffer drastically on cross phase-shifted evaluation,

suggesting position specific overfitting.

We aim to raise awareness about issues with APEs, which are still widely used in pre-

training large language models. Our results highlight the severity of position shortcuts

taken by the model during pre-training and fine-tuning, and imply that TLMs may
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have vastly varying sub-window sentence representation capability than previously

assumed.

6.1 Technical Background

Position encodings used by TLMs come in three broad categories: fixed sinusoidal em-

beddings as proposed by Vaswani et al. [2017], absolute or learned popularized by

BERT Devlin et al. [2019b] family of masked language models, and relative positions

[Shaw et al., 2018] used by T5 Raffel et al. [2020]. Fixed position embeddings Vaswani

et al. [2017] consists of representing token positions with a sinusoidal function. BERT

[Devlin et al., 2019b]-style family of masked language models propose using absolute

position embeddings, which learn an unique vector assigned to each position. Sub-

sequently, relative position embedding techniques have been proposed, which involve

computing position embeddings on the fly based on a neighborhood window. Table 6.1

provides an overview of different positional encodings used in public models. Wang

et al. [2021] presents a comprehensive overview of current encoding strategies.

Name Release Year Positional Encoding Type

BERT [Devlin et al., 2019a] 2019 Learned Absolute
RoBERTa [Liu et al., 2019a] 2019 Learned Absolute
GPT2 [Radford et al., 2019a] 2019 Learned Absolute
BART [Lewis et al., 2020a] 2020 Learned Absolute
LongFormer [Beltagy et al., 2020] 2020 Learned Absolute
T5 [Raffel et al., 2020] 2020 Relative Learned Bias
GPT3 [Brown et al., 2020] 2020 Learned Absolute
GPT-Neo [Black et al., 2021] 2021 Learned Absolute
Fairseq-Dense [Artetxe et al., 2021] 2021 Fixed Absolute
ShortFormer [Press et al., 2021] 2021 Fixed Absolute
GPT-J [Wang, 2021] 2021 Rotary
GPT-NeoX [Black et al., 2022] 2022 Rotary
OPT [Zhang et al., 2022b] 2022 Learned Absolute
PaLM [Chowdhery et al., 2022] 2022 Rotary

Table 6.1 Positional encoding of commonly used pretrained language
models.
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Despite being an older method, absolute positional embeddings (APEs) are report-

edly better than its relative counterparts on several tasks [Ravishankar et al., 2021], and

are still used by majority of the large pre-trained TLMs, including the recently released

OPT Zhang et al. [2022b]. APEs compute token representation after adding the input

token to the position embedding for the corresponding position: xi = θW [wi] + θP [i],

where, θW ∈ R|V |×d is the token vocabulary of size |V |, embedding dimension d, and

the absolute position embedding matrix θP ∈R|T |×d, where T is the maximum context

window size of the model. Now, a sentence S = [w1,w2...wn] containing n tokens, is

mapped during inference to positions 1,2, ... n contiguously for all models.

TLM offer various sizes of context window, which is the maximum sequence length

in tokens it can train and infer on. Since this context window is usually larger than

the average sentence length, multiple sentences can be packed together to “fill" the

context window during pre-training. This allows TLMs to learn that sentences can

start from various positions in their context window. If models trained with APEs

do encode relativity of position, then the sentence representations should be roughly

equal throughout the context window, regardless of their starting position.

To understand the relativity of APEs, we examine the model performance under

phase shift conditions. Phase shift1 involves right-shifting the absolute positions of all

tokens in the sentence by an equal distance k, such that the tokens are now mapped to

new positions 1 + k,2 + k, ..., n+ k, or xi = θW [wi] + θP [i+ k]. As such, phase shifting

changes only the absolute position, but preserves the relative distances between tokens

in the a sentence. Theoretically, we can shift the positions within the context window

as long as k+ n ≤ T .

1More related to our work, Kiyono et al. [2021] train a Transformer model from scratch using shifted
positional embeddings for machine translation, and observe improved performance in extrapolation
and intrapolation setup.
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6.2 Evaluated Models

We used 11 publicly available pretrained language models in this work, ranging across

different architecture families: Encoder, Sequence-to-Sequence, and Auto regressive

models. All of them use absolute positional embeddings (APE) that is learned during

pretraining. In §6.2.1, we follow the standard practice for in-context learning evalu-

ation [Brown et al., 2020, Black et al., 2022, Gao et al., 2021] and use autoregressive

models. In our initial experiments, we found GPT2 to have a similar behaviour to OPT

models, and since the OPT models are available in a wider range of sizes, we primarily

focus on them for these experiments. In fine-tuning (§6.4.3) and acceptability (§6.4.1)

experiments, we assess all model families. However, because of the computational

costs associated with these experiments, we opt for model variants with < 1B param-

eters. The details of all models can be found in Table 6.2. We use HuggingFace [Wolf

et al., 2020b] model hub to load, fine-tune train, and run infererence for all models.

Model Type Pretraining Objective Context Size First Position # Layers Hidden Size # Params

RoBERTa family [Liu et al., 2019a]

RoBERTaBASE encoder-only Masked Language Modeling 514 2 12 768 123M
RoBERTaLARGE encoder-only Masked Language Modeling 514 2 24 1024 325M

BART family [Lewis et al., 2020a]

BARTBASE encoder-decoder Masked Language Modeling 1024 2 6 768 140M
BARTLARGE encoder-decoder Masked Language Modeling 1024 2 12 1024 400M

GPT2 family [Radford et al., 2019a]

GPT2 decoder-only Next Token Prediction 1024 0 12 768 125M
GPT2MEDIUM decoder-only Next Token Prediction 1024 0 24 1024 345M

OPT family [Zhang et al., 2022b]

OPT125M decoder-only Next Token Prediction 2048 2 12 768 125M
OPT350M decoder-only Next Token Prediction 2048 2 24 1024 350M
OPT2.7M decoder-only Next Token Prediction 2048 2 32 2560 2.7B
OPT13B decoder-only Next Token Prediction 2048 2 40 5120 13B
OPT30B decoder-only Next Token Prediction 2048 2 48 7168 30B

Table 6.2 Details of the models we used in this paper.
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6.2.1 Prompting

For evaluating zero-shot inference and in-context learning, we make use of EleutherAI

Language Model Evaluation Harness [Gao et al., 2021], an open-source library that is

used for evaluating autoregressive pretrained language models [Black et al., 2022]. In

the zero-shot setting, each example is converted to a prompt using task-specific tem-

plates. Then, the prompt is fed to the language model to elicit the answer. Similarly,

in the few-shot setup, a prompt is created from the concatenation of few dataset exam-

ples base on the same template and are prepended as a context to validation instances.

In our experiments, we use default templates provided by the EleutherAI Language

Model Evaluation Harness. The task performance is computed over the validation set

of due to the lack of public test sets, except for ARC, where we evaluate the models on

the test set. We set the number of few-shots examples to be five and randomly sample

them from the training set of each dataset. We report the few-shot results averaged

over five random seeds. Note that feeding inputs to the models still follows the same

protocol introduced in §6.4.1.

6.3 Evaluated Datasets

Dataset # Train # Test/Validation

BliMP - 67000
COPA 400 100
PIQA 16113 1838
WinoGrande 40398 1267
ARC (Easy) 2251 2376
MRPC 3668 408
RTE 2490 277
CoLA 8551 1043

Table 6.3 Dataset statistics we used in this work.

We use BLiMP [Warstadt et al., 2020b] for the grammatical acceptability experi-

ments in §6.4.1 as it is typically employed in a inference-only setting and does not
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require additional training. For §6.4.3, we take three tasks from the standard language

understanding benchmark GLUE [Wang et al., 2018] which is often used for finetuning

language models: MRPC, RTE, and COLA. In addition to these three tasks, we use four

other datasets, COPA, PIQA, WinoGrande, and ARC, on which the OPT family have

previously demonstrated good performance Zhang et al. [2022b]. Table 6.3 shows the

statistics of all datasets, and the following provides a brief description of them:

• BLiMP [Warstadt et al., 2020b] is a challenge set designed to measures the model’s

ability to distinguish between acceptable and unacceptable English sentences.

This benchmark consists of synthetic examples created based on expert-crafted

grammars, where each instance comes with two versions: one acceptable and

one unacceptable.

• COPA [Gordon et al., 2012] is an open-domain commonsense causal reasoning

task, where the model is given a premise and must correctly identify its cause

or effect. COPA consists of short hand-crafted sentences and is provided as a

multi-choice task.

• PIQA [Bisk et al., 2020] is a physical commonsense benchmark dataset, challeng-

ing language models’ idea of the physical world. Given a physical goal, a model

must choose the most plausible solution between two choices. This benchmark

is used in the multi-choice format.

• WinoGrande [Sakaguchi et al., 2020] is a commonsense reasoning benchmark

based on the Winograd Schema Challenge (WSC) [Levesque et al., 2011] with

increased hardness and scale. The dataset is provided as a pronoun resolution

problem, where the model must recover an ambiguous pronoun in a given con-

text.

• ARC [Clark et al., 2018] is collected from grade-school-level science questions
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commonly asked in exams. This question-answering dataset is provided in a

multi-choice QA format suitable for evaluating pretrained language models. We

use the "easy" subset of this benchmark.

• MRPC [Dolan and Brockett, 2005] is a paraphrase identification dataset collected

from online news websites and has become a standard benchmark in the NLP

community. We follow the previous works and treat the data as a text classifica-

tion task.

• RTE [Giampiccolo et al., 2007a] is one of original subtasks in the GLUE bench-

mark and comprises textual entailment challenges. We follow the standard for-

mat and use Natural Language Inference (NLI) protocol for this dataset.

• CoLA [Warstadt et al., 2019d] is a linguistic acceptability dataset, where each

example is an English sentence annotated with a binary label showing whether it

is a grammatical sentence. This is a text classification dataset and we follow the

standard protocol and report Matthews correlation coefficient [Matthews, 1975].

6.3.1 Grammatical acceptability

We use all 67 subsets (a total of 67K data instances) of BLiMP Warstadt et al. [2020b].

A model achieves a score of 1 if it successfully assigns a lower perplexity to the gram-

matical version of each example. We report the average score across the entire dataset

for starting positions that are shifted in the intervals of 10. The inputs are fed to the

models in the format explained in §6.1. Recall that perplexities are ill-defined in case

of Masked Language Models. Thus, we follow the formulation of Salazar et al. [2020]

to compute a pseudo-perplexity for RoBERTa and BART. We adopt the Minicons Misra

[2022] library to compute the perplexities, which provides a unified interface for mod-

els hosted in HuggingFace [Wolf et al., 2020b].
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6.4 Results

6.4.1 Impact of phase shifts on grammatical acceptability
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Figure 6.2 Acceptability Scores in BLiMP Warstadt et al. [2020a] dataset
across different phase shifts. RoBERTa only supports context window of
size T = 512, so we capped the scores to phase shift k = 300 to allow for
sentences of maximum length in BLiMP to be evaluated.

First, we investigate the impact of phase shifting on the model performance. We

compute the perplexities of several publicly available models—RoBERTa [Liu et al.,

2019b], BART [Lewis et al., 2020b], GPT2 [Radford et al., 2019a] and OPT [Zhang et al.,

2022b]—to evaluate the grammatical acceptability capabilities of the model, using the

BLiMP Warstadt et al. [2020b] benchmark.2 We compute the task score by comparing

2We adopt the perplexity computation strategy for RoBERTa and BART from Salazar et al. [2020]
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Figure 6.3 Distribution of sentences in BLiMP Warstadt et al. [2020a] hav-
ing the lowest perplexities (i.e., are deemed most acceptable) for each phase
shift.
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grammatical and ungrammatical sentence perplexities, and applying the phase shift in

increasing values of k to the sentences and models (Figure 6.2).

While computing the task scores and perplexities of the models, we observed that

all of the models exhibit poor task performance on phase shifts. Due to the non-

shiftable nature of the [CLS] token in masked language models (MLMs), we fixed

the position of [CLS] token to start position during phase shifting. However, we ob-

served a marked improvement in task performance when we use trigger tokens in the

beginning of the sentence, typically the end-of-sentence ([EOS]) token in case of MLM

models (RoBERTa, BART). An explanation for this ambiguity in results is that typically

when models are pre-trained, multiple sentences are packed together in the context

window by delimiting the start of each sentence with an [EOS] token. While this is

not the case for GPT2, we also observed improved performance in some cases when we

add a beginning of sentence ([BOS]) token to the sentence and add a special [EOS]

token to delimit the start of a sentence. Thus, in all of our results, we opt with this

configuration (adding an [EOS] token before the sentence) to ensure fairer evaluation

for all model families. Concretely, the input to a model uses the following template:

[CLS][EOS]<sentence>

In cases where a model does not have the [CLS] token, we instead use [BOS]. If

none of those are available, we replace it with [EOS] (so a total of two [EOS]’s will

be prepended). For phase shift k, we fix the position of [CLS] token to be the first

available position in model’s APE (refer to Table 6.2) and we shift every position id by

k. For example, given phase shift k = 100, and first position id being 1, and sentence

length of n, we have the following vector of position ids:

p⃗ = [1,100,101, . . . , n+ 100]
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We observe that the task performance of all models, except for RoBERTa, drastically

suffers from phase shifting. Autoregressive models in particular display worse results.

This is likely due to a mismatch of position information learned due to the causal lan-

guage modelling objective vs the position information provided to the model during

phase shift [Haviv et al., 2022]. We also compare the perplexities of each sentence

across different phase shifts and plot the frequency of sentences having the lowest per-

plexity in each k (Figure 6.3). We observe in GPT2 that more that 70% of the sentences

have their best perplexity in k = 0, highlighting a severe zero-position bias. OPT350M

has better sub-window sentence representation capacity than similarly sized GPT2,

which is also evident from the acceptability results in Figure 6.2.

6.4.2 Impact of phase shifts on in-context learning

More recently, zero-shot and few-shot inference, commonly referred to as in-context

learning, have become a de facto standard in evaluating pretrained language models

[Brown et al., 2020]. In this approach, the model’s predictions are produced by condi-

tioning it on certain prompts, such as instructions (zero-shot setting) or a few examples

of input-output pairs (few-shot setup). In both cases, the model faces an extended in-

put text, and we suspect it will be affected by deficiencies of APE. To evaluate this

hypothesis, we employ an experimental setup similar to §6.4.1. Under zero-shot and

five-shot inference regimes, we assess the model performance on standard NLP tasks

when it is fed with inputs in increasing values of phase shifts. We choose OPT model

family, because it is available in a wide range of sizes (125M to 30B parameters), al-

lowing allows us to examine the behavior of APE at different scales. Moreover, our

evaluations take into account four tasks reported in the original paper: Winogrande

[Sakaguchi et al., 2020], COPA [Gordon et al., 2012], PIQA [Bisk et al., 2020], and ARC

[Clark et al., 2018] as well as two classification datasets from GLUE benchmark [Wang

et al., 2018]: MRPC and RTE. We provide an aggregated view of the models’ perfor-
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Figure 6.4 Aggregate performance of OPT family on six NLP tasks when
various phase shifts are applied.
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Figure 6.5 Distribution of prompts with best accuracy across all six tasks.

mance on all six accuracy-dominated benchmarks in Figure 6.4. The detailed plots for

each task are in §6.5.1.

In most tasks, the performance deteriorates when the model process inputs in any

other phase shift than zero, especially in zero-shot inference. More importantly, the

model’s performance is not always adversely affected by phase shifts. In fact, Fig-

ure 6.5 shows that non-zero starting positions result in the best accuracy for many

prompts. This erratic performance is present in all model sizes, and scaling the number

of parameters does not help. Furthermore, one can see larger models are more affected

by shifted starting position, which suggests that absolute positional embedding might

need more data or training as the number of parameters increases.
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6.4.3 Impact of phase-shifts on fine-tuning

Finally, we investigate the effect of phase shift in fine-tuning. We ask whether the

models can generalize to out-of-phase sentences for a given task. We train RoBERTa,

BART, GPT2 and OPT models on CoLA, RTE and MRPC tasks from the GLUE bench-

mark [Wang et al., 2018] and evaluate them on phase-shifts. We choose these three

relatively small tasks in order to decrease the number of gradient updates to position

embeddings during fine-tuning. We perform a cross-phase analysis by training and

evaluating across different phase shifts (k = 0,100,200,300) for all models on the same

set of datasets, and show the averaged performance. We observe for all models, the

task performance drops during out-of-phase evaluation (non-diagonals in Figure 6.6).
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Figure 6.6 GLUE task heatmap with varying fine-tuning train and test
phase shifts, averaged across all models. Darker colors represent better task
performance.

The drop in performance of evaluating out-of-phase sentences might just be sim-

ply attributed to overfitting on position information during fine-tuning. However, we

observe that for all tasks, training and evaluating on the same phase-shift is worse

when k ̸= 0 (diagonals in Figure 6.6). Out-of-phase training appears to be worst for

CoLA, which suffers drastically when fine-tuning on different phase shifts. These re-

sults highlight a potential task data bias with respect to different positions.
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6.5 Analysis

6.5.1 Further evaluation on Phase shifting with prompts

We displayed a holistic view of zero-shot and five-shot experiments in Figure 6.4, cov-

ering the accuracies averaged over all six datasets. In this section, we now report

and analyze the result of each dataset individually. Figure 6.7 and Figure 6.8 show-

case models’ performance in zero-shot and five-shot configurations. The same pattern

can be seen across all model sizes in COPA, WinoGrande, PIQA, ARC (Easy), and

RTE. Concretely, the zero-shot abilities of the models sharply decrease as we increase

the starting position. Moreover, five-shot inference, typically referred to as in-context

learning, is also subject to decreased performance, ranging from -2% to -40%. How-

ever, the degradation is not as severe as with zero-shot setting. Only MRPC exhibits

stable phase shift performance, but even in this case, larger models are still adversely

affected. Due to the exceptionally poor performance of OPT family on CoLA, we ex-

clude these results from our analysis (Figure 6.8).

The erratic behaviour observed in majority of evaluated datasets makes it evident

that models struggle to encode the relative distances of words as their understanding

of inputs heavily change with various phase shifts. It is important to note that our find-

ings demonstrate models’ unstable functioning as opposed to solely highlighting their

failure. Indeed, Figure 6.5 shows that one can extract better and improved accuracies

with non-zero starting positions. Namely, OPT30B has the best zero-shot performance

on phase shift k = 300 in the case of MRPC; the same pattern can also be observed in

RTE five-shot for OPT13B on phase shift k = 300. Another noteworthy observation is

that the performance drop is often a non-monotonic function of phase shifts. i.e., for

some prompts, the model might be more accurate for k = 1000 than for k = 0. This

observation suggests that some positional biases might be learned during pre-training

and are well-captured by APE. So, increasing values of k in some occasions lands the
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ous phase shifts for each individual dataset (Part 1)
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model attentions in a “sweet spot” in the processing window, such that the model ben-

efits from some positional biases learned during pre-training.

We observe the presence of erratic behavior across a fairly wide range of model

sizes in the OPT family. Additionally, it can be seen that larger models are more prone

to fail at encoding relative positions than their smaller counterparts. One possible

explanation for this is that in order for the models to encode relative positional infor-

mation, they need to view all combinations of words and sentences in every position.

This coverage rarely occurs in natural data, resulting in data sparsity issues. Hence,

models with a large number of parameters may require more data/training to learn

the relative ordering of words.

6.5.2 Variation of best perplexity across phase shifts

In this section, we investigate the perplexity of individual sentences from the BLiMP

dataset across each phase shift for each model. We plot the distribution of sentences

achieving lowest perplexity in each phase shift for the range of models in Figure 6.9.

We observe several modes of phase shift for RoBERTa and BART models where they

have the least perplexity on phase shifts other than the standard (zero position). In the

case of GPT2 and OPT, the distribution is more skewed towards zero, indicating they

almost always achieve the lowest perplexity in the zero position, i.e. when there is no

phase shift.

6.5.3 Variation in attention patterns with phase shift

We further perform attention analysis on GPT2, RoBERTa and BART to visualize whether

the model’s attention pattern changes with phase shifts. Following the experimental

protocol of Raghu et al. [2021], we first collect a summary of attention weights com-

puted with token distances for each token-pair in a sentence. This summary metric is

then further normalized for sentence length. The values of this metric show whether
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the attention is local (low values)—focused on small token distances—or global (high

values)—i.e. focused on the whole sentence.

We compute this attention summary metric on a sample of 5000 sentences drawn

from the BLiMP dataset Warstadt et al. [2020b]. We then plot the summary values per

layer and sort according to the values for each attention head, as per Raghu et al. [2021].

The idea is to discover whether this attention summary metric is drastically different

under different phase shift conditions.

We do observe drastic differences in attention patterns in all layers for GPT2 (Fig-

ure 6.10) and GPT2-Medium (Figure 6.11). Comparing this with of RoBERTa (base)

(Figure 6.12) and RoBERTa (large) (Figure 6.13), we can corroborate our findings from

§6.4.1—RoBERTa is much more robust to phase shifts. Consequently, BART (Figure 6.14

and Figure 6.15) also displays differences in attention patterns, but they are not as dras-

tic as GPT2.

6.6 Related Work

Positional encoding has been always an important part of the Transformer architec-

ture, and since it original introduction different variants of it have been deployed by

pretrained models (see Table 6.1 for a summary of positional encoding used by some

of popular state-of-the-art models.)

Positional encodings have garnered a niche community over the past several years.

Wang and Chen [2020] investigate whether position embeddings learn the meaning of

positions and how do they affect the learnability for different downstream tasks. Wang

et al. [2021] explore different positional encodings and establish monotonicity, transla-

tion and symmetry properties of different methods, including APEs. They also report

that learned APE’s demonstrate superior performance for text classification, further

adding to the evidence APE’s enable exploitation of positional biases. Luo et al. [2021]
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report that masked language model embeddings consists of positional artefacts which

bias the model output. More related to our work, Kiyono et al. [2021] train a Trans-

former model from scratch using shifted positional embeddings for machine trans-

lation, and observe improved performance in extrapolation and intrapolation setup.

Haviv et al. [2022] reports a surprising finding that autoregressive Transformer models

trained without explicit positional information still perform on-par with their counter-

parts having access to positional information. This result is attributed to the causal

attention structure induced by the autoregressive training only, as this effect is not ob-

served with masked language models, as highlighted by both Haviv et al. [2022] and

Sinha et al. [2021a]. Ke et al. [2021] proposes a novel technique to de-correlate the po-

sition encodings and token embeddings, and achieve better downstream performance

than baselines. Ravishankar et al. [2021] find relative positional encoding does not

improve over APE in multi-lingual setting.

On the other hand, multiple works have shown the advantage of explicit relative

positional encoding for length extrapolation. Csordás et al. [2021] show Transform-

ers equipped with variants of relative positional encoding [Dai et al., 2019, Shaw et al.,

2018] significantly outperform their absolute counterparts when it comes to length gen-

eralization. In the same line of work, Ontanon et al. [2022] also find that for numerous

synthetic benchmarks, the best extrapolation performance can only be obtained by rel-

ative positional encoding. Press et al. [2022] take the experiments beyond synthetic

datasets and show that APE’s struggle in generalization to longer sequence of natu-

ral language. All of these amount to the evidence that points to APE’s as one of the

potential reasons Transformers are known to fail in length generalization and produc-

tivity [Hupkes et al., 2020, Lake and Baroni, 2018]. Although the benefits of using

explicit relative positional bias is mentioned in various works, they typically come at

the cost of slowing the training down: [Press et al., 2022] report that training T5 (which

uses a relative variant of positional encoding) is almost twice as slow as training a
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model with sinusoidal absolute embedding. Thus, the gained runtime efficiency al-

lows longer training of the APE model, which in turn enables the further extrapolation

capabilities. These works suggest that we have a lot left to explore about positional

encoding and highlight the fact that the consequences of particular choices is still an

open field of ongoing research.

6.7 Discussion

In this chapter, we investigate the abilities of APEs in encoding the relative positions of

the tokens in an input. We observe that TLMs using APEs encode sentences differently

based on the starting position of the sentence in the context window. To summarize

our findings:

• Reduced sub-context window sentence processing capability of TLMs. Ma-

jority of TLM’s show worse perplexity scores when the position information is

shifted, emulating a different start of sentence (§6.4.1).

• MLMs offer better sub-context sentence representations. Masked Language

Models have much better ability to reconcile sentence representations from within

a context window, compared to their autoregressive counterparts (Figure 6.2).

• MLM models have lower surprisal scores in sub-context positions. Even so,

Masked LM’s also display large variations in perplexity, leading to wide fluctu-

ations in the best starting position for a given sentence. This highlights different

sub-window representation capability of MLMs, which can be leveraged further

to develop more generalizable models.

• Systematicity issues for Autoregressive models in Prompting. Autoregressive

models remains highly susceptible to the shift in starting positions, possibly due

to mismatch in their own, implicit position representation vs the provided one
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[Haviv et al., 2022]. This is evident with the wildly fluctuating and significantly

worse results on prompting (§6.5.1).

• Poor out-of-context generalization in full fine-tuning. Full finetuning with dif-

ferent class of models also highlights the over-dependence of models (both MLM

and Autoregressive) on the starting position of a given sentence. Notably, mod-

els display poor out-of-phase generalization, and present the best results when

trained without any phase shift, highlighting a potential position-to-data bias

(§6.4.3).

• Different sentence processing behavior in sub-context positions. When pro-

vided with different starting positions, the models attention behaviors also dras-

tically changes (§6.5.3), exhibiting systematicity issues in in-context sentence rep-

resentation capability of large language models.

These results has major implications in the way we perceive the sentence process-

ing capabilities of TLMs. Specifically, we observe that the representation of the same

sentence varies depending on where it is in the context window, such that it impacts

zero shot, few shot and full shot task performance of sub-window sentences. The re-

sults and analysis in this chapter also explains the erratic behavior of models towards

different word order as observed in §4 and §5, in that APE’s do not contain the nec-

essary inductive bias to represent the relative position information of words in a sen-

tence. Future work could leverage the start position in building robust and position-

generalizable models. We hope our work can inform the community on the pitfalls

of using APEs, and inspire development and adoption of alternative relative position

embedding based approaches.
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Figure 6.10 Attention globality distributions of GPT2 across different
heads (sorted according to value) and averaged over all layers and 5000
data points. Blue curve stands for the no phase shift condition, and orange,
green and red curves represent k = 100,200 and 300 respectively.
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Figure 6.11 Attention globality distributions of GPT2-Medium across dif-
ferent heads (sorted according to value) and averaged over all layers and
5000 data points. Blue curve stands for the no phase shift condition, and
orange, green and red curves represent k = 100,200 and 300 respectively.
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Figure 6.12 Attention globality distributions of RoBERTa (base) across dif-
ferent heads (sorted according to value) and averaged over all layers and
5000 data points. Blue curve stands for the no phase shift condition, and
orange, green and red curves represent k = 100,200 and 300 respectively.
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Figure 6.13 Attention globality distributions of RoBERTa (large) across dif-
ferent heads (sorted according to value) and averaged over all layers and
5000 data points. Blue curve stands for the no phase shift condition, and
orange, green and red curves represent k = 100,200 and 300 respectively.
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Figure 6.14 Attention globality distributions of BART (base) across differ-
ent heads (sorted according to value) and averaged over all layers and 5000
data points. Blue curve stands for the no phase shift condition, and orange,
green and red curves represent k = 100,200 and 300 respectively.
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Figure 6.15 Attention globality distributions of BART (large) across differ-
ent heads (sorted according to value) and averaged over all layers and 5000
data points. Blue curve stands for the no phase shift condition, and orange,
green and red curves represent k = 100,200 and 300 respectively.
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Chapter 7

Conclusion

In this thesis, we have used systematicity as a tool to inspect and investigate the se-

mantic and syntactic reasoning capabilities of state-of-the-art NLU models. In NLP,

we witness a trend of ever-increasing size of large language models of the Transformer

family, following the laws of scale [Kaplan et al., 2020]. These models tend to satu-

rate established benchmarks quickly, even surpassing human-level performance [Kiela

et al., 2021], and project a notion of human-level reasoning capability. However, in this

thesis we re-evaluate those notions using the principles of systematicity. We observe

in our results that such models fail to display robust, systematic human-like behaviors

while processing natural language, which can cause severe issues in production set-

tings. My work in this thesis attempts to highlight these issues; provides a mechanism

to understand the black-box nature of the Transformer-family large language models;

and allow us to evaluate their human-like generalization capability. The findings of

this thesis will hopefully help the community to develop more robust and human-like

NLU models in the future.
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7.1 Summary

To summarize the major findings in this thesis:

• Generalization via composition is hard, depends on the structure of input. In

Chapter §3 we observe that NLU models fail short of generalizing to systematic

compositions of known rules. This highlights the models inability to reason by

stitching known components, which is a key requirement for modular systems.

We also observe the models to be highly sensitive to unwanted noise in the in-

put, which a human can easily circumvent. Finally, we observe that one of the

key hurdles for the model to achieve systematic generalization is its inability to

comprehend the variability of syntax of natural language.

• Models face word-order insensitivity issues in inference and pre-training. In

Chapter §4, we further find evidence of the poor syntactic encoding of state-of-

the-art NLU models, by applying the notions of systematicity to word-order.

Specifically, we find these models are surprisingly in-sensitive to drastic per-

turbations of word-order, which is undoubtedly one of the basic components

needed for syntax understanding. We observe for downstream tasks such as

MNLI [Williams et al., 2018c], a state-of-the-art model can still perform optimally

(or sometimes even better) on inputs where word-order is scrambled, making

the input devoid of the original semantic information. Furthermore, in Chapter

§5, we observe the same models achieve near optimal downstream performance

when pre-trained from scratch on word-order shuffled data. Thus, we observe

word-order being a powerful tool to investigate the systematicity of model rea-

soning capability.

• Syntax representation of large language models is considerably weaker than

we thought. Following the results of Chapter §4 and Chapter §5, one might be
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quick to conclude that Transformer-family of models have no syntactic abilities

at all. However, that is not the case. Our results highlights a key aspect of the

internal workings of Transformer-family of models: they do not require the same

notions of classic syntax processing pipelines (pos-tagging, named-entity recog-

nition, parsing, etc) as we thought them to have in order to achieve good down-

stream performance. Rather, their high performance can be explained by their

distributional nature: ability to learn the n-gram statistics of tokens from the

training copora. Our results can also highlight that fact that our current meth-

ods of evaluating syntax in these models is outdated, and we need better under-

standing of syntax evaluation mechanisms, such that they are co-related with the

downstream task results.

• A probable cause of weak syntax encoding is due to its poor understanding

of relative positions. Finally, in Chapter §6 we attempt to understand the rea-

son models are weak in their syntax encoding. We observe that it can be par-

tially explained by the poor relative position encoding scheme employed by the

Transformer-family of models. Due to their lack of proper relative position un-

derstanding, these models are prone to different sentence processing behaviors

when subjected to understanding a sentence within a context in isolation. We

provide a thorough analysis and conjecture that the positional encoding schemes

employed by these models should be revisited closely in order to improve their

syntax representation abilities.

7.2 Limitations

In this section, we discuss the limitations of the research presented in this thesis as a

whole. The goal of this thesis is to raise systematicity issues with the language process-

ing mechanisms employed by NLU models. While our results raise significant number
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of questions, they are not exhaustive. Also, systematicity leads us to explore one spe-

cific subsection of the broad out-of-domain generalization literature, which could have

many other potential avenues to investigate the inner workings of these models.

The biggest limitation with the dataset introduced in Chapter §3 stems due to its

semi-synthetic nature. While synthetic and semi-synthetic datasets are useful in evalu-

ating the model in a diagnostic setting, the dataset is not an ideal candidate to evaluate

model performance in a real world setting, as we do not expect models to ever en-

counter such complex puzzles. Some of the natural language templates curated from

Amazon Mechanical Turk might have undesired noise in them, which is unfortunately

hard to eradicate in a crowd-sourced data annotation setting. Finally, at the time of

publication of our paper [Sinha et al., 2019], we were only beginning to explore pre-

trained Transformer family of models, hence we only included a small subset of it

(BERT). It would be interesting to explore followup studies with modern Transformer-

family of models (GPT2 [Radford et al., 2019a], RoBERTa [Liu et al., 2019b], DeBERTa

[He et al., 2020]) to see if they still have such systematicity issues. Furthermore, post

publication of this paper a new trend emerged in NLU, which consists of learning in-

context from given examples (or prompts) using a massive language model, such as

GPT3 or OPT. It would be further interesting to compare length generalization based

systematicity issues with such in-context learning modes, which could perhaps be less

amenable to the problem as they do not require any parameter updates (however there

doesn’t exist such a study to date, and it is an open question).

In our word-order related works (Chapter §4 and Chapter §5), one criticism we re-

ceived is on the method of application of permutation pre-tokenization. Ravishankar

et al. [2022] show that for some model families, the unnatural acceptability reduces

significantly if the permutation is performed post-tokenization, i.e. directly on the BPE

tokens. While the nature of experiments run by Ravishankar et al. [2022] is not directly

comparable to our setting (they use a subset of tasks, pre-train a much smaller net-
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work on a significantly less amount of data), their results also corroborate ours. Post-

tokenization can be viewed as sub-unigram permutations on individual tokens. Since

the model never gets to learn those sub-unigrams in isolation, the permutation ac-

ceptability is also drastically lower, which is similar to our results from pre-training in

Chapter §5. In a real-world scenario, it is much more probable for a model to encounter

out-of-position words rather than tokens, which highlights the need for systematically

investigating the root cause of permutation acceptance.

Our primary model type for exploration in Chapter §5 has been masked language

models (MLM). It is conceivable to expect the same effect from Autoregresive language

models, however it is an open question worthy of further inspection. Haviv et al.

[2022] observe a surprising fact that Autoregressive models can perform optimally even

without position embeddings. This highlights that Autoregressive models might have an

internal representation of positions which is learned indirectly due to the causal lan-

guage modelling objective. Thus, it could be a possibility that when trained on shuf-

fled sentences these Autoregressive models face a position representation mismatch

between train (shuffled) and inference (natural) word orders. Thus, it would be an

interesting followup experiment to observe the same effects in such classes of models,

to complete our understanding of the distributional nature of Transformer family of

models.

Finally, our experiments on sub-sentence representation in Chapter §6 is solely lim-

ited to models having absolute position embeddings. We do not focus on the relative

position embeddings [Shaw et al., 2018, Raffel et al., 2020] (RPE) as our method of

phase-shift analysis is not applicable to those classes of models. RPEs employ a win-

dow based position information computation on the fly, which does not require it to

store embeddings uniquely for each position. Thus, a phase shift in RPE would not

change the sentence processing pipeline, as the model recomputes the position infor-

mation based on the shifted window. Thus, we need different tools to study the relative
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position encoding of RPE than the one proposed in this work, which remains an open

question.

7.3 Future Work

The work presented in this thesis opens up several exciting prospects for future work.

A non-exhaustive set of ideas for future work based on top of our results is listed here.

Mutually exclusive learning A few years ago, Manning [2015] encouraged NLP to

consider “the details of human language, how it is learned, processed, and how it

changes, rather than just chasing state-of-the-art numbers on a benchmark task.” In

this thesis, we expand upon this view, and suggest one particular future direction: we

should train models not only to do well on clean test data, but also be consistent in their

understanding of corrupt, malformed or irrelevant data. For instance, a systematic

model should avoid processing a malformed, corrupt or noisy input - instead it should

provide mechanisms for early detection and exit. This concept is studied under the

realm of mutual exclusivity, which has been shown to be a recurrent problem of neural

networks [Gandhi and Lake, 2020]. A good future direction to alleviate the issues of

word-order insensitivity would be to design word-order exclusive models, which will

provide an early exit mechanism when they encounter corrupt input.

Leveraging distributional overlap to measure model performance Our results in

Chapter §5 highlight the distributional characteristics which the large language models

employ to achieve good model performance. The results suggests that the Transformer-

family of models utilize their massive amount of parameters to memorize the statistics

of n-gram distributions during pre-training. Recent results [Feldman and Zhang, 2020,

Carlini et al., 2021, 2022] also corroborate the claim that models with larger amount of

parameters memorize longer contiguous stretches of the input text. Future work can
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leverage this fact to devise tailored evaluation datasets for each model, such that the

test distribution has the least amount of overlap with the n-gram distributions learned

by the model.

Developing privacy sensitive NLU models The results from Chapter §4 and Chap-

ter §5 also open an exciting future direction to develop privacy sensitive NLU models.

Recent results increasingly highlight a growing concern for developing privacy sen-

sitive models. Transformer models are shown to memorize large amount of training

data, which can be extracted via prompting methods [Carlini et al., 2021, 2022], sen-

sitive token information can be gained by attack vectors in embedding space [Song

and Raghunathan, 2020], or by carefully crafted adversarial attacks [Henderson et al.,

2018]. Current privacy preserving techniques typically involve extensive computation,

and result in sub-optimal downstream task performance [Jayaraman and Evans, 2019].

Given our results, leveraging word-order to pre-train Transformer-family models can

be a powerful alternative to develop privacy sensitive NLU models. Any prompting

based attack vector will not be able to extract the same sentences used during train-

ing, as the input is itself shuffled and corrupted. A shuffled input would also result

in retrieving sensitive information harder, as the context required to extract the same

information is not in its original position in the training data. The resulting model

would not lose downstream performance considerably, as the model only requires the

distributional statistic to perform optimally (§5.4.1).



168

Bibliography

Anne Abeille. Lexical and syntactic rules in a Tree Adjoining Grammar. In 28th An-

nual Meeting of the Association for Computational Linguistics, pages 292–298, Pittsburgh,

Pennsylvania, USA, June 1990. Association for Computational Linguistics. doi: 10.

3115/981823.981860. URL https://www.aclweb.org/anthology/P90-1037.

Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of visual

question answering models. arXiv preprint arXiv:1606.07356, 2016.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear

classifier probes. In ICLR 2017, Workshop Track Proceedings. OpenReview.net, 2017.

URL https://openreview.net/forum?id=HJ4-rAVtl.

Matteo Alleman, Jonathan Mamou, Miguel A Del Rio, Hanlin Tang, Yoon Kim,

and SueYeon Chung. Syntactic perturbations reveal representational correlates

of hierarchical phrase structure in pretrained language models. arXiv preprint

arXiv:2104.07578, 2021. URL https://arxiv.org/abs/2104.07578.

Aixiu An, Peng Qian, Ethan Wilcox, and Roger Levy. Representation of constituents in

neural language models: Coordination phrase as a case study. In Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2888–

2899, Hong Kong, China, November 2019. Association for Computational Linguis-

https://www.aclweb.org/anthology/P90-1037
https://openreview.net/forum?id=HJ4-rAVtl
https://arxiv.org/abs/2104.07578


Bibliography 169

tics. doi: 10.18653/v1/D19-1287. URL https://www.aclweb.org/anthology/

D19-1287.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer,

Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Ananthara-

man, Xian Li, Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou,

Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona T. Diab, Zor-

nitsa Kozareva, and Ves Stoyanov. Efficient large scale language modeling with mix-

tures of experts. CoRR, abs/2112.10684, 2021. URL https://arxiv.org/abs/

2112.10684.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

Alan D Baddeley, Graham J Hitch, and Richard J Allen. Working memory and binding

in sentence recall. Journal of Memory and Language, 2009. URL https://doi.org/

10.1016/j.jml.2009.05.004.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm

de Vries, and Aaron Courville. Systematic generalization: What is required and

can it be learned? In International Conference on Learning Representations, 2019. URL

https://openreview.net/forum?id=HkezXnA9YX.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum. Learning to few-shot learn

across diverse natural language classification tasks. In Proceedings of the 28th Interna-

tional Conference on Computational Linguistics, pages 5108–5123, Barcelona, Spain (On-

line), December 2020. International Committee on Computational Linguistics. doi:

https://www.aclweb.org/anthology/D19-1287
https://www.aclweb.org/anthology/D19-1287
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://doi.org/10.1016/j.jml.2009.05.004
https://doi.org/10.1016/j.jml.2009.05.004
https://openreview.net/forum?id=HkezXnA9YX


Bibliography 170

10.18653/v1/2020.coling-main.448. URL https://aclanthology.org/2020.

coling-main.448.

Regina Barzilay and Mirella Lapata. Modeling local coherence: An entity-based ap-

proach. Computational Linguistics, 34(1):1–34, 2008. doi: 10.1162/coli.2008.34.1.1.

URL https://aclanthology.org/J08-1001.

Regina Barzilay and Lillian Lee. Catching the drift: Probabilistic content models,

with applications to generation and summarization. In Proceedings of the Human

Language Technology Conference of the North American Chapter of the Association for

Computational Linguistics: HLT-NAACL 2004, pages 113–120, Boston, Massachusetts,

USA, May 2 - May 7 2004. Association for Computational Linguistics. URL https:

//aclanthology.org/N04-1015.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and alternatives. arXiv

preprint arXiv:2102.12452, 2021.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document

transformer. CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.

05150.

Douglas K Bemis and Liina Pylkkänen. Basic linguistic composition recruits the left

anterior temporal lobe and left angular gyrus during both listening and reading.

Cerebral Cortex, 2013.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form,

and understanding in the age of data. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 5185–5198, Online, July 2020. As-

sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.463. URL

https://www.aclweb.org/anthology/2020.acl-main.463.

https://aclanthology.org/2020.coling-main.448
https://aclanthology.org/2020.coling-main.448
https://aclanthology.org/J08-1001
https://aclanthology.org/N04-1015
https://aclanthology.org/N04-1015
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://www.aclweb.org/anthology/2020.acl-main.463


Bibliography 171

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. Advances in neural information processing systems, 19,

2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth

PASCAL recognizing textual entailment challenge. In TAC, 2009. URL

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

232.1231&rep=rep1&type=pdf.

Jean-Phillipe Bernardy and Shalom Lappin. Using deep neural networks to learn

syntactic agreement. In Linguistic Issues in Language Technology, Volume 15, 2017.

CSLI Publications, 2017. URL https://www.aclweb.org/anthology/2017.

lilt-15.3.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. English web treebank. Linguis-

tic Data Consortium, Philadelphia, PA, 2012. URL https://catalog.ldc.upenn.

edu/LDC2012T13.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng Gao, and Yejin Choi. PIQA:

reasoning about physical commonsense in natural language. In The Thirty-Fourth

AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February

7-12, 2020, pages 7432–7439. AAAI Press, 2020. URL https://aaai.org/ojs/

index.php/AAAI/article/view/6239.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large

Scale Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL

https://doi.org/10.5281/zenodo.5297715. If you use this software, please

cite it using these metadata.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://www.aclweb.org/anthology/2017.lilt-15.3
https://www.aclweb.org/anthology/2017.lilt-15.3
https://catalog.ldc.upenn.edu/LDC2012T13
https://catalog.ldc.upenn.edu/LDC2012T13
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://doi.org/10.5281/zenodo.5297715


Bibliography 172

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Gregory Anthony, Leo Gao,

Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang,

Michael Martin Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds,

Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-neox-20b: An open-source

autoregressive language model. In Challenges & Perspectives in Creating Large Lan-

guage Models, 2022. URL https://openreview.net/forum?id=HL7IhzS8W5.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. JMLR,

2003. URL https://www.jmlr.org/papers/volume3/blei03a/blei03a.

pdf.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning.

A large annotated corpus for learning natural language inference. In Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing, pages

632–642, Lisbon, Portugal, September 2015. Association for Computational Linguis-

tics. doi: 10.18653/v1/D15-1075. URL https://www.aclweb.org/anthology/

D15-1075.

Joan Bresnan, Ash Asudeh, Ida Toivonen, and Stephen Wechsler. Lexical-functional

syntax. John Wiley & Sons, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,

editors, Advances in Neural Information Processing Systems 33: Annual Conference

https://openreview.net/forum?id=HL7IhzS8W5
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://www.aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/D15-1075


Bibliography 173

on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,

Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina

Oprea, and Colin Raffel. Extracting Training Data from Large Language Models,

June 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer,

and Chiyuan Zhang. Quantifying Memorization Across Neural Language Models.

arXiv:2202.07646 [cs], February 2022.

James McKeen Cattell. The time it takes to see and name objects. Mind, os-XI(41):63–

65, 01 1886. ISSN 0026-4423. doi: 10.1093/mind/os-XI.41.63. URL https://doi.

org/10.1093/mind/os-XI.41.63.

Rui Chaves. What don’t RNN language models learn about filler-gap dependencies?

In Proceedings of the Society for Computation in Linguistics 2020, pages 1–11, New York,

New York, January 2020. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/2020.scil-1.1.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. En-

hanced LSTM for natural language inference. In Proceedings of the 55th Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1657–1668, Vancouver, Canada, July 2017. Association for Computational Linguis-

tics. doi: 10.18653/v1/P17-1152. URL https://www.aclweb.org/anthology/

P17-1152.

Gennaro Chierchia and Sally McConnell-Ginet. Meaning and grammar: An Introduction

to Semantics. Cambridge, Ma: MIT Press, 1990.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1093/mind/os-XI.41.63
https://doi.org/10.1093/mind/os-XI.41.63
https://www.aclweb.org/anthology/2020.scil-1.1
https://www.aclweb.org/anthology/2020.scil-1.1
https://www.aclweb.org/anthology/P17-1152
https://www.aclweb.org/anthology/P17-1152


Bibliography 174

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder–decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

1724–1734, 2014.

Noam Chomsky. Syntactic structures. Walter de Gruyter, 1957.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-

tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,

Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,

Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,

Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay

Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin

Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,

Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,

Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pel-

lat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine

Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele

Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,

and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL

https://arxiv.org/abs/2204.02311.

Grzegorz Chrupała and Afra Alishahi. Correlating neural and symbolic represen-

tations of language. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 2952–2962, Florence, Italy, July 2019. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/P19-1283. URL https:

//www.aclweb.org/anthology/P19-1283.

https://arxiv.org/abs/2204.02311
https://www.aclweb.org/anthology/P19-1283
https://www.aclweb.org/anthology/P19-1283


Bibliography 175

Guglielmo Cinque. Adverbs and functional heads: A cross-linguistic perspective. Oxford

University Press on Demand, 1999.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins,

and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no

questions. In Proceedings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 2924–2936, Minneapolis, Minnesota, June 2019a. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL https:

//aclanthology.org/N19-1300.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What

does BERT look at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages

276–286, Florence, Italy, August 2019b. Association for Computational Linguis-

tics. doi: 10.18653/v1/W19-4828. URL https://www.aclweb.org/anthology/

W19-4828.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:

Pre-training text encoders as discriminators rather than generators. arXiv preprint

arXiv:2003.10555, 2020a.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa

Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc,

the AI2 reasoning challenge. CoRR, abs/1803.05457, 2018. URL http://arxiv.

org/abs/1803.05457.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over

language. In IJCAI, 2020b.

https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457


Bibliography 176

Louis Clouatre, Prasanna Parthasarathi, Amal Zouaq, and Sarath Chandar. Local struc-

ture matters most: Perturbation study in NLU. In Findings of the Association for Com-

putational Linguistics: ACL 2022, pages 3712–3731, Dublin, Ireland, May 2022. Associ-

ation for Computational Linguistics. URL https://aclanthology.org/2022.

findings-acl.293.

Ronan Collobert and Jason Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In ICML, 2008. URL

https://dl.acm.org/doi/10.1145/1390156.1390177.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Reinhard Stolle, and Daniel G. Bo-

brow. Entailment, intensionality and text understanding. In Proceedings of the

HLT-NAACL 2003 Workshop on Text Meaning, pages 38–45, 2003. URL https:

//www.aclweb.org/anthology/W03-0906.

Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sen-

tence representations. In Proceedings of the Eleventh International Conference on Lan-

guage Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European

Language Resources Association (ELRA). URL https://aclanthology.org/

L18-1269.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bor-

des. Supervised learning of universal sentence representations from natural lan-

guage inference data. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 670–680, Copenhagen, Denmark, September

2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1070. URL

https://www.aclweb.org/anthology/D17-1070.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco

Baroni. What you can cram into a single $&!#* vector: Probing sentence embeddings

https://aclanthology.org/2022.findings-acl.293
https://aclanthology.org/2022.findings-acl.293
https://dl.acm.org/doi/10.1145/1390156.1390177
https://www.aclweb.org/anthology/W03-0906
https://www.aclweb.org/anthology/W03-0906
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://www.aclweb.org/anthology/D17-1070


Bibliography 177

for linguistic properties. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 2126–2136, Melbourne,

Australia, July 2018a. Association for Computational Linguistics. doi: 10.18653/v1/

P18-1198. URL https://aclanthology.org/P18-1198.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco

Baroni. What you can cram into a single vector: Probing sentence embeddings for

linguistic properties, 2018b.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail:

Simple tricks improve systematic generalization of transformers. In Proceedings

of the 2021 Conference on Empirical Methods in Natural Language Processing, pages

619–634, Online and Punta Cana, Dominican Republic, November 2021. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.49. URL

https://aclanthology.org/2021.emnlp-main.49.

Jillian Da Costa and Rui Chaves. Assessing the ability of transformer-based neural

models to represent structurally unbounded dependencies. In Proceedings of the Soci-

ety for Computation in Linguistics 2020, pages 12–21, New York, New York, January

2020. Association for Computational Linguistics. URL https://www.aclweb.

org/anthology/2020.scil-1.2.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual

entailment challenge. In Machine learning challenges. evaluating predictive uncertainty,

visual object classification, and recognising tectual entailment. Springer, 2006.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan

Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length

context. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 2978–2988, Florence, Italy, July 2019. Association for Computa-

https://aclanthology.org/P18-1198
https://aclanthology.org/2021.emnlp-main.49
https://www.aclweb.org/anthology/2020.scil-1.2
https://www.aclweb.org/anthology/2020.scil-1.2


Bibliography 178

tional Linguistics. doi: 10.18653/v1/P19-1285. URL https://aclanthology.

org/P19-1285.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Ak-

shay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and

arrive at the answer: Reasoning over paths in knowledge bases using reinforce-

ment learning. In International Conference on Learning Representations, 2018. URL

https://openreview.net/forum?id=Syg-YfWCW.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller, Samuel J Gershman, and Noah D

Goodman. Evaluating compositionality in sentence embeddings. In Proceedings of

Annual Meeting of the Cognitive Science Society, 2018. URL https://arxiv.org/

abs/1802.04302.

Forrest Davis and Marten van Schijndel. Recurrent neural network language models

always learn English-like relative clause attachment. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 1979–1990, Online, July

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.

179. URL https://www.aclweb.org/anthology/2020.acl-main.179.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commit-

mentbank: Investigating projection in naturally occurring discourse. In proceedings

of Sinn und Bedeutung, volume 23, pages 107–124, 2019.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,

and Richard Harshman. Indexing by latent semantic analysis. Journal

of the American society for information science, 41(6):391–407, 1990. URL

https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/

(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9.

https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285
https://openreview.net/forum?id=Syg-YfWCW
https://arxiv.org/abs/1802.04302
https://arxiv.org/abs/1802.04302
https://www.aclweb.org/anthology/2020.acl-main.179
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9


Bibliography 179

Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming question answering

datasets into natural language inference datasets. arXiv preprint arXiv:1809.02922,

2018. URL https://arxiv.org/pdf/1809.02922.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, 2019a. Association for Computational

Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/

N19-1423.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, June 2019b. Association for Computa-

tional Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.

org/N19-1423.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sen-

tential paraphrases. In Proceedings of the Third International Workshop on Paraphras-

ing (IWP2005), 2005. URL https://www.aclweb.org/anthology/I05-5002.

pdf.

Pedro Domingos and Matthew Richardson. Markov logic networks. Mach. Learn., 62

(1-2):107–136, 2006. ISSN 0885-6125.

Timothy Dozat and Christopher D Manning. Deep biaffine attention for neural depen-

dency parsing. In 5th International Conference on Learning Representations, ICLR 2017,

https://arxiv.org/pdf/1809.02922.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.aclweb.org/anthology/I05-5002.pdf
https://www.aclweb.org/anthology/I05-5002.pdf


Bibliography 180

Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

URL https://openreview.net/forum?id=Hk95PK9le.

Matthew S Dryer. The Greenbergian word order correlations. Language, pages 81–138,

1992.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in trans-

formers: An overview, 2021. URL https://arxiv.org/abs/2102.11090.

Sašo Džeroski. Relational data mining. In Data Mining and Knowledge Discovery Hand-

book, pages 887–911. Springer, 2009.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. On adversarial examples for character-

level neural machine translation. In Proceedings of the 27th International Conference on

Computational Linguistics, pages 653–663, Santa Fe, New Mexico, USA, August 2018a.

Association for Computational Linguistics. URL https://aclanthology.org/

C18-1055.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-box ad-

versarial examples for text classification. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers), pages 31–36,

Melbourne, Australia, July 2018b. Association for Computational Linguistics. doi:

10.18653/v1/P18-2006. URL https://aclanthology.org/P18-2006.

Allyson Ettinger. What BERT is not: Lessons from a new suite of psycholinguistic

diagnostics for language models. Transactions of the Association for Computational Lin-

guistics, 8:34–48, 2020. doi: 10.1162/tacl_a_00298. URL https://www.aclweb.

org/anthology/2020.tacl-1.3.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and Emily M. Bender. Towards linguis-

tically generalizable NLP systems: A workshop and shared task. In Proceedings of

https://openreview.net/forum?id=Hk95PK9le
https://arxiv.org/abs/2102.11090
https://aclanthology.org/C18-1055
https://aclanthology.org/C18-1055
https://aclanthology.org/P18-2006
https://www.aclweb.org/anthology/2020.tacl-1.3
https://www.aclweb.org/anthology/2020.tacl-1.3


Bibliography 181

the First Workshop on Building Linguistically Generalizable NLP Systems, pages 1–10,

Copenhagen, Denmark, September 2017. Association for Computational Linguistics.

doi: 10.18653/v1/W17-5401. URL https://aclanthology.org/W17-5401.

Robert M Fano. The transmission of information. Massachusetts Institute of Technology,

Research Laboratory of Electronics . . . , 1949.

Zichu Fei, Qi Zhang, Tao Gui, Di Liang, Sirui Wang, Wei Wu, and Xuanjing Huang.

CQG: A simple and effective controlled generation framework for multi-hop ques-

tion generation. In Proceedings of the 60th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 6896–6906, Dublin, Ireland, May

2022. Association for Computational Linguistics. URL https://aclanthology.

org/2022.acl-long.475.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Dis-

covering the long tail via influence estimation. Advances in Neural Information Pro-

cessing Systems, 33:2881–2891, 2020.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,

1957.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A

critical analysis. Cognition, 28(1-2):3–71, 1988.

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only

batchnorm: On the expressive power of random features in cnns. arXiv preprint

arXiv:2003.00152, 2020. URL https://arxiv.org/abs/2003.00152.

Gottlob Frege. Sense and reference. The philosophical review, 1948.

Herve Gallaire and Jack Minker. Logic and Data Bases. Perseus Publishing, 1978.

https://aclanthology.org/W17-5401
https://aclanthology.org/2022.acl-long.475
https://aclanthology.org/2022.acl-long.475
https://arxiv.org/abs/2003.00152


Bibliography 182

Kanishk Gandhi and Brenden M Lake. Mutual exclusivity as a challenge for deep

neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, volume 33, pages 14182–

14192. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/

paper/2020/file/a378383b89e6719e15cd1aa45478627c-Paper.pdf.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,

Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang,

Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou.

A framework for few-shot language model evaluation, 2021. URL https://doi.

org/10.5281/zenodo.5371628.

Jon Gauthier and Roger Levy. Linking artificial and human neural representations

of language. In Proceedings of the 2019 Conference on Empirical Methods in Natu-

ral Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 529–539, Hong Kong, China, November 2019.

Association for Computational Linguistics. doi: 10.18653/v1/D19-1050. URL

https://aclanthology.org/D19-1050.

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian, and Roger Levy. SyntaxGym:

An online platform for targeted evaluation of language models. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics: System Demonstra-

tions, pages 70–76, Online, July 2020. Association for Computational Linguistics. doi:

10.18653/v1/2020.acl-demos.10. URL https://www.aclweb.org/anthology/

2020.acl-demos.10.

Dedre Gentner and Cecile Toupin. Systematicity and surface similarity in the develop-

ment of analogy. Cognitive science, 10(3):277–300, 1986.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL

https://proceedings.neurips.cc/paper/2020/file/a378383b89e6719e15cd1aa45478627c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a378383b89e6719e15cd1aa45478627c-Paper.pdf
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/D19-1050
https://www.aclweb.org/anthology/2020.acl-demos.10
https://www.aclweb.org/anthology/2020.acl-demos.10


Bibliography 183

recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop

on Textual Entailment and Paraphrasing, pages 1–9, Prague, June 2007a. Association for

Computational Linguistics. URL https://aclanthology.org/W07-1401.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third

PASCAL recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL

workshop on textual entailment and paraphrasing, pages 1–9, 2007b. URL https://

www.aclweb.org/anthology/W07-1401.pdf.

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem

Zuidema. Under the hood: Using diagnostic classifiers to investigate and im-

prove how language models track agreement information. In Proceedings of the 2018

EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,

pages 240–248, Brussels, Belgium, November 2018. Association for Computational

Linguistics. doi: 10.18653/v1/W18-5426. URL https://aclanthology.org/

W18-5426.
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